
Python

Tech Radar

Acknowledgements

Here’s a list of individuals who made Python Tech Radar possible:

Chief Content Officer of Python Tech Radar:

Paulina Kajzer

Additional content support:

Adam Stempniak, Jakub Grajcar

Visual support:

Iga Woytynowska, Igor Krupa

Digital support: 
Adam Przewoźny

Promotional support: 
Justyna Dados, Aleksandra Wykrota, Natasza Mikołajczak

With deep gratitude to the many experts who contributed to the project: 
Ronald Binkofski, Marek Bryling, Szymon Darmofał, Jakub Kołaczkowski, Mikołaj Lewandowski,  
Marek Melzacki, Jan Pleszyński, Krzysztof Sopyła, Maciej Urbański, Łukasz Wolak

Very special thanks:

Łukasz Langa

Python Tech Radar is brought to you by STX Next—Europe’s largest software

development consulting company specializing in Python.

Python has been our core technology since 2005, and it has helped us support

the business growth of 300+ clients worldwide, as well as grow our in-house

roster to over 550 experts across all software development disciplines.

Part I: The Expert Guide 1

2

9

34

45

67

69

75

84

93

103

Python’s Infinite Adjacent Possibilities
Łukasz Langa

Jan Pleszyński & Szymon Darmofał

Maciej Urbański

Łukasz Wolak & Marek Melzacki

Will Python Ever Become Fully Asynchronous?

The Business Impact of Python 3.11’s Performance Boost

Maximizing Value with Python:  

MVP Development in the Software Industry

Part II: The Developer Report

Who answered the survey?

Python now

Education & development

Tools & technologies

What’s NEXT?

Table of
Contents

The Expert 
Guide

Part I

Python’s
Infinite
Adjacent
Possibilities

chapter

Łukasz Langa

@ Python Software Foundation

01

Introduction

What were the

necessary

preconditions that

made Python’s rise in

popularity inevitable?

03

It’s easy to forget that when Guido van Rossum announced Python and published the

first source code archive for it on the alt.sources newsgroup, the Linux project hadn’t yet

started and there were no web browsers or the web itself. There was no HTML,

JavaScript, or Java.
 

The early history of Python is well documented, so there’s no need to go into detail about

it here. Having said that, I’ll just note that it’s remarkable that this lightweight

programming language was created before the rules of open source collaboration were

established, and yet it still thrives today.
 

At the time, there were many other dynamic scripting languages in development, such as

Larry Wall’s Perl and John Ousterhout’s Tcl, but they have since declined in popularity. So,

what kept Python from meeting the same fate? 

The most commonly cited reasons for Python’s popularity are its visible language

features, such as its “runnable pseudocode” nature, thanks to which the language is easy

to learn for beginners yet robust enough for professional use.

There’s a term in theoretical biology coined by Stuart Kauffman called “the adjacent

possible.” It explains how life can evolve in a seemingly synchronized manner out of

nowhere.

Kauffman believes this is because when all the necessary preconditions for the next

evolutionary step are met, that step becomes inevitable. With so much replication

happening, biospheres will, on average, take that step sooner or later.

Steven Johnson borrowed the term for his TED Talk, “Where Good Ideas Come From,”

which was later turned into a book. In his talk and book, Johnson notes that the history

of innovation follows a similar pattern.

Initially, some inventions seem impossible. However, as more discoveries are made, there

comes a moment when all the necessary preconditions are met, and the impossible

becomes not only possible, but inevitable.
 

In this opening chapter of Python Tech Radar, I’ll share my perspective as the

 to explore how the concept

of “the adjacent possible” applies to the evolution of Python and has helped it become

the programming language it is today.

CPython

Developer in Residence at the Python Software Foundation

What were the

necessary

preconditions that

made Python’s rise in

popularity inevitable?

The (very) difficult

transition from Python

2 to Python 3

04

It wasn’t all smooth sailing, though. As Python core developers gained experience, it

became apparent that some of the early language design choices were flawed. Guido’s

running joke was that all these issues would be resolved in Python 3000.

Over time, the desire to correct past mistakes gained enough traction among the core

developers and support from the community to make the Python team decide to release

Python 3.0. It was supposed to be a major, incompatible release that addressed many

issues in Python 2 and prepared the language for future developments.

The plan was for users to seamlessly upgrade their Python 2 programs with automatic

tooling built into Python 2.7 and Python 3.0, and by 2015, everyone would have

transitioned away from Python 2. However, as we all know, that isn’t what happened.
 

The growth of Python at that time was so rapid that many users were unable to upgrade

to Python 3 fast enough. The belief that Python 2 programs could be automatically

translated into Python 3 proved naive and problematic. A significant amount of user code

turned out to be unclear, making it difficult for automatic tools to refactor it without

causing issues.

Another widely cited reason is its ability to interact well with C code, allowing other

programming languages to interoperate with Python.  

The scientific community wouldn’t have embraced Python to such a degree if not for its

ability to call pre-existing scientific code written in C and Fortran. Guido van Rossum’s

early tagline for the language was that “Python bridges the gap between C and shell

programming.”

While all of those reasons are indeed accurate, a project can’t sustain growth for 30

years based on features alone. Clearly, the community surrounding Python must have

done something right.

In my view, the keys to Python’s success were twofold. Firstly, Guido’s openness to

accept contributions from others, listen to their feedback, and sometimes even alter the

course of development based on that feedback. All of that was critical for the language

to evolve in a way that met the needs of its users.

Secondly, Python embraced modularity early on, enabling the growth of the Python

Package Index (PyPI) and later Conda. And finding a library on PyPI that fulfilled your

needs was like magic in the early 2000s.

The (very) difficult

transition from Python

2 to Python 3

Overcoming the

transitional challenges

with polyglot Python

05

In my opinion, the transition from Python 2 to Python 3 surprisingly helped the language

grow. When Python core developers released Python 3.1, they announced there would be

no further development of Python 2 and that Python 2.7 would be its last release with

only bug fixes being addressed.

This led to a period of perfect stability for library maintainers and end users, which

resulted in an increase in the usage of Python between 2008 and 2015, despite the low

adoption rate of Python 3. In fact, I’d argue that the low adoption of Python 3 contributed

to this growth, as Python 2 was dependable and unchanging.

For us Python core contributors, the situation was dire. Our development efforts weren’t

receiving much community support, and the future of Python 3 was uncertain.

Fortunately, the community came up with a solution by converting codebases into a

polyglot form, meaning they were refactored in a way that allowed them to work on both

Python 2 and Python 3 simultaneously.

Helper tools like python-modernize and six gained widespread adoption, and libraries on

PyPI gradually received support for Python 3. This allowed end users to gently introduce

Python 3 to their projects. If they encountered any difficulties, they could always revert

to the reliable Python 2 and try again later.

What’s often overlooked is that the requirement to maintain a polyglot codebase made

the Python library ecosystem significantly stronger. That’s because it forced maintainers

to improve their test coverage to ensure their libraries worked on both versions of

Python. This was the only way to confirm that the polyglot code was working as

intended.

Moreover, maintainers of popular Python libraries on PyPI weren’t ready to drop support

for Python 2, as all their users were still on that version. Maintaining two separate

codebases for both Python 2 and 3 would have been a nightmare.
 

As a result, many decided to delay their adoption of Python 3, which in turn prevented

end users from fully utilizing Python 3, as their preferred libraries weren’t available on

that version of the interpreter. The situation was getting bad, since a different, more

incremental approach was clearly needed.

Overcoming the

transitional challenges

with polyglot Python

Python 3 fully replaces

Python 2 as the

community standard

Exploring the Python 3

landscape and looking

ahead

06

While the community remained on Python 2, core developers kept adding new innovative

features to each subsequent version of Python 3. Finally, with the release of Python 3.6,

critical mass was reached, and end users realized that the effort the migration required

was worth it to unlock the plethora of Python 3-specific features like Unicode-first text,

type annotations, asyncio, and of course f-strings.

In April 2020, Python 2 officially reached its end-of-life. The community was now armed

with robust CI systems that could test code on multiple Python versions concurrently.

Their test suites were strong and their line coverage was adequate, which allowed

Python 3 to continue growing incrementally. This bridged the gap between the two

versions and also prevented stagnation.

Fast forward to early 2023, and the future of Python looks brighter than ever before.

There are over 13 terabytes of package data on PyPI and the computing world is

transitioning from the dominance of Intel’s x86 architecture.

Our excellent infrastructure tools not only prepared us to build binary packages for the

rapidly growing ARM platform, but Python itself also runs exceptionally well on Apple

Silicon, with noticeable performance gains over Intel-powered hardware.

Performance has always been an important part of Python, and this trend continues with

each new release. Python 3.6 was faster than Python 2.7, and every subsequent version

of Python 3 has only widened this gap.

This progress was further accelerated by Microsoft’s investment in Python, with its

Faster Python team—led by Mark Shannon and including Guido among its members—

working to improve the performance of the language.
 

Their efforts have already paid off tremendously in Python 3.11, which runs the official

benchmark suite at speed.python.org 32% faster on average than Python 3.10, with some

benchmarks close to twice as fast.

The need to run tests with multiple Python versions led to the development of tools such

as virtual environments, Tox, advanced CI integrations, and so on—things we strongly

depend on even today. Those tools and that infrastructure allowed Python to continue

growing steadily.

http://speed.python.org/

Python 3 fully replaces

Python 2 as the

community standard

The adjacent

possibilities of Python

Python—the open-

source language  

for everyone

07

Python is now the go-to language for artificial intelligence research and practical

application of machine learning and data science. Attempts to rival it have failed so far,

since Python’s unique set of strengths makes it an invaluable scientific tool.
 

At the same time, Python is the most popular programming language taught in schools. It

also runs in web browsers and on microcontrollers, and can be embedded in mobile

applications.
 

This presents us with a very attractive outlook: when it comes to Python, the adjacent

possibilities seem to be infinite. You can develop your idea with Python whether you’re

interested in artificial intelligence or primary education, web development or mobile

applications, accounting software or video games, Docker containers in huge data

centers or tiny battery-powered devices.
 

Best of all, the language is not tied to any for-profit corporation, and its growth path is

community-led. Through its open license, acceptance of community changes, its Python

Enhancement Proposal (PEP) process, and the annually elected steering council, you can

be sure it won’t suddenly disappear or shift direction.

The openness of Python allows you to participate in its development. From minor

documentation fixes, through fixing a bug or two in your favorite standard library, to more

impactful contributions as a core developer—it’s all available to voluntary contributors. In

the past 12 months alone, we grew the core engineering team at Python Software

Foundation by seven new developers.

And the best part is that these significant gains are just the tip of the iceberg. Python

3.12 is already showing even more promising results, since work is well under way on the

PEP 659—Specializing Adaptive Interpreter. This also provides the foundation for more

extensive internal changes within the interpreter, including a long-awaited just-in-time

compiler (JIT).

At the same time, other bold initiatives are being taken to tackle the limitations that have

hindered Python’s adoption in compute-intensive applications. One such limitation is the

reliance on the Python GIL (global interpreter lock), whose removal is to be directly

addressed in PEP 703.

Python—the open-

source language for

everyone

08

You can now also contribute to Python’s core development through funding. The PSF

employs a growing number of individuals working full-time on Python-related projects. As

the CPython Developer in Residence, I’m lucky to be one of them. I sincerely hope we can

grow this position to more developers, and this is where sponsoring the Python Software

Foundation is crucial.
 

Last but not least, I want to leave you with the same sense of wonder I feel when I look at

the big picture. Evolving from humble beginnings as a tool meant to bridge shell scripting

and the C language, into its current form as a crucial component in the advancement of

science and industry, Python has been and continues to be there for you—free, easy to

use, running everywhere, and with infinite adjacent possibilities.
 

Will Python Ever
Become Fully
Asynchronous?

Jan Pleszyński Szymon Darmofał
Solutions Architect Senior Python Developer

@ STX NEXT

chapter 02

Introduction

What is

concurrent

computing?

Concurrency is the composition of independently

executing computations.

—Rob Pike

Nowadays, modern applications have to support an increasing number of simultaneous

operations and users. It’s a massive problem for software developers. This is why we

have to look for methods that will help us utilize hardware resources effectively and make

applications as high-performing as possible.

J Why were they superseded by more modern solutionse

J How do these modern solutions apply in the vast Python ecosystem?

Let us take you on a journey through concurrent concepts and solutions in the Python

ecosystem. In this article, you’ll find out about the history of Python concurrency

solutions and learn answers to questions such asn

On top of that, we’ll show you what’s behind the corner soon to be introduced.  

Spoiler alert: the future looks bright!

To hold a proper discussion about concurrency, we first need to define it. Let’s see what

a renowned expert has to say on this subject.

According to Rob Pike:

The core feature of concurrency is dealing with a lot of computations at once, but not

always at the same time.

Making progress on more than one task—seemingly at the same time.

Thread 1

Thread 2
CPU

Concurrency

10

What is

concurrent

computing?

From the perspective of a concurrent system’s user, it seems that these concurrent

computations are indeed executed at the same time. But this is only an illusion created

by the fact that CPU frequency is orders of magnitude greater than the perception of any

human being.

The opposite of concurrent computing is so-called sequential computing. In this

paradigm, all tasks are completed one after the other. So the latter task can’t start before

the previous one is finished.

A concept closely related to concurrent computing is parallel computing. These two are

very often confused. In fact, they’re quite similar, but they’re not the same. Let us explain

how parallel computing differs from concurrent computing.

Parallel computing happens when a task is executed simultaneously on two CPUs.

There’s no illusion here and computations are indeed executed at the same time.

This chapter won’t cover the topic of parallel computation; it’s just mentioned here to

clear up any confusion between parallel computation and concurrent computation.

However, for the sake of completeness, we’ll just give you a small clue in case you didn’t

know: in Python, parallel computing is done with the use of a multiprocessing package.

CPU Task 1 Task 2

Sequential computing

Parallel computing

Making progress on more than one task at the exact same time.

Thread 1CPU

Thread 2CPU

11

Why and when

is concurrency

needed?

Python’s best

concurrency

solutions from

the past

We may confidently say that

 Throughout history, its developers looked at the problem of

concurrency from many different angles, and although not all have stood the test of time,

we are thankful for them and you should be, as well.

Do you remember the famous quotation of George Santayana,

? This is why we want to introduce you to

some of these past solutions.

from its conception, Python has been a language

supporting concurrency.

“Those who can’t

remember the past are condemned to repeat it”

Threading module

From the very first version of Python (Python 1.0), the go-to concurrency tool was the

threading module. Even though it’s still valid and may be of some use, we’ll only discuss

Now that we’ve learned what concurrency is, let’s find out why we need it.

 But why and, more importantly, when will you see

the performance increase?

This won’t happen in every program. The more awaiting for the completion of some other

operations, the more a program’s performance increases by using a concurrent approach.

 In most cases, in the scope of the request, there are many I/O

calls issued, e.g. to a database or other APIs. I/O operations are blocking and usually take

a long time, which may be saved for performing other useful tasks.

You can clearly see that a server dealing with requests sequentially is definitely not an

option, as incoming requests would block all requests that come afterward. These types

of problems are best solved by using concurrency.

 These are domains that are heavily event-driven. In

such domains, concurrent tasks will be responsible for responding to these events,

without awaiting for other tasks to finish.

You’ll find some specific examples of use cases solved by a concurrent approach in the

“Use cases” section.

The first

reason why you may have to consider a concurrent paradigm over a sequential

paradigm is to increase performance.

The obvious situation where you’ll find concurrency indispensable is a server dealing

with multiple connections.

The second reason why you would need concurrency is the fact that some domains can

only be modeled by this paradigm.

12

Python’s best

concurrency

solutions from

the past

it to show the humble beginnings of Python concurrency, as this won’t be your tool of

choice anymore.

 The basic idea here is

that many tasks can be performed concurrently in threads, which are managed by the

operating system. This means that any

thread may be paused during any nonatomic statement in order to pass control to the

next thread.

They say that a picture (or image) is worth a thousand words, so here’s a diagram:

The threading module makes use of underlying system threads.

Python threads work in a preemptive fashion.

We can see that it’s the responsibility of the scheduler to preempt a task from what it’s

currently doing and give control to the next pending task.

At a glance, this concurrency model is fairly simple to understand and use. It also solves

the problem of blocking I/O calls—whenever a blocking I/O call happens in one thread,

the rest of them can continue to operate unaffected.

However, threading also has many inherent downsides, making it very difficult to use

correctly. These downsides stem directly from the previously mentioned characteristic of

threads—preemptiveness.

Task

Scheduler Task

Task

Scheduler

limited

 gives control to the

task for some time

Scheduler

limited

 takes back control from

the task after some time

Preemptive model

13

Python’s best

concurrency

solutions from

the past

How can these features cause problems? A simple example will clear any confusion right

away:

Here we have a situation where money is transferred between two parties. In the

method, we have a call to the method, which takes some time. Let’s

look at the sequential invocation of the code:

deduct

_log_deduction

class

def

def

def

if

raise

def

def

return

def

 (self, initial_funds: int):

 self._funds = initial_funds

 (self, funds: int):

 time.sleep()

 print()

 (self, funds: int):

 self._funds - funds < :

 InsufficientFundsError

 self._log_deduction(funds)

 self._funds -= funds

 (self, funds: int):

 self._funds += funds

 (self):

 (

 payer: TransactionParty,

 payee: TransactionParty,

 amount: int

):

 payer.deduct(amount)

 payee.add(amount)

TransactionParty:

__init__

_log_deduction

deduct

add

__str__

transfer

0.01

0

f"Deducted {funds}"

f"Current funds: {self._funds}"

def

for in

def

 (

 payer: TransactionParty,

 payee: TransactionParty,

 amount: int,

 transactions: int,

):

 _ range(transactions):

 transfer(payer, payee, amount)

 ():

 payer = TransactionParty()

 payee = TransactionParty()

 sequential(payer, payee, amount= , transactions=) 

 print()

sequential

main

200

0

100 3

f"Payer: {payer}. Payee: {payee}"

An example of issues with threads preemptiveness

14

When the code is called sequentially, it works correctly. Having attempted three times to

deduct 100 units of a currency, the deduct method raises InsufficientFundsError.

We can imagine that, for some reason, it would be required to run the code concurrently.

So the thread counterpart would be:

This time, money is successfully deducted three times leaving the payer with negative

funds. So the code that worked correctly once it was run sequentially is now broken—and

we’re left with the necessity of debugging the issue. An issue that may be extremely hard

to find in a large, convoluted codebase!

What causes the concurrent code to malfunction is the fact that the operations of

checking the condition and updating the funds

 aren’t atomic together. 

As we mentioned before, threads work in a preemptive manner, so the context switch

between these two statements can happen at any time. We have made the context

switch certain by adding a fake method, which sleeps for some time.
 

Nevertheless, with enough load on the server, the context switch would have inevitably

happened between checking the condition and updating. This is the exact issue with the

 function.

if self._funds - funds < :

self._funds -= funds

 _log_deduction

add

0

def

 for in

 for in

 for in

def

concurrent_threads

main

(

 payer: TransactionParty,

 payee: TransactionParty,

 amount: int,

 transactions: int,

):

 threads = [

 threading.Thread(

 target=transfer,

 args=(payer, payee, amount)

)

_ range(transactions)

]

t threads:

 t.start()

t threads:

 t.join()

():

 payer = TransactionParty()

 payee = TransactionParty()

 concurrent_threads(payer, payee, amount= , transactions=)

 print()

200

0

100 3

f"Payer: {payer}. Payee: {payee}"

15

Python’s best

concurrency

solutions from

the past

As we can see, threads didn’t happen to be the ultimate solution to solving concurrent

challenges in Python. What caused the worst headaches while using threads was their

preemptiveness.

We’re sure that if you used Python threads for something more complicated than parallel

API calls, you must have been battered by surprising errors caused by preemptive

concurrency. We know your pain. It has happened to us many times, as well. 

So where did we, as a Python community, head from there?

To be honest, the problem presented here isn’t inherent to preemptive concurrency but

to concurrency in general. However, old thread-based solutions have major problems

compared to future Python concurrency approachese

b Thread-based solutions don’t make it obvious where the problem may be. Future

additions to Python syntax expose places where we can expect this kind of trouble^

b They amplify the problem with concurrent change of a shared state, since context

switches can happen at any line of code—even during single nonatomic statements,

as in the example of the “+= operator.” So you are forced to be extra careful and think

about these minute details when you code.

This is what the creator of the Lua programming language, Roberto Lerusalimschy has to

say about this issue:

16

“Second, and more importantly, we didn’t (and still

don’t) believe in the standard multithreading model,

which is preemptive concurrency with shared

memory: we still think that no one can write correct

programs in a language where ‘a = a + 1’ isn’t

deterministic.”

—Roberto Lerusalimschy

Python’s best

concurrency

solutions from

the past

What are the core issues with preemptive concurrency?

Add the fact that all threads operate on the same memory and you have a recipe for

disaster, the causes of which aren’t easily traceable.

Let’s follow the cooperative model diagram. We can see that a special construct called an

 yields control to the task for an —although preferably short— .

It’s the responsibility of the to write a task in such a way that it will yield

control back when it waits for a result of a blocking operation.

For this model to work well, all tasks have to be non-blocking and yield back control to

the event loop frequently.

In recent years, the Python community has developed many frameworks to support

cooperative concurrency: Tornado, Twisted, or Eventlet—just to name a few. However,

their popularity was never high and there wasn’t enough support in the Python syntax for

the concept of cooperative concurrency was unwieldy.

event loop unlimited time

developer

This behavior is the reason why we call this model

“cooperative.”

Learning from past attempts, Python developers noticed that there was a better way to

handle concurrent computing: the cooperative concurrency model. How does it differ

from the preemptive model offered by a standard threading module? With this approach,

concurrent tasks switch only when they decide it’s time to switch.

This is completely different from the preemptive approach where, if you recall, tasks

could be switched by the underlying OS at any time.

17

The current state

of concurrency

in Python

Cooperative concurrency model

Task

Event loop Task

Task

Event loop yields control to the

task for an unlimited time

Task yields control to the event

loop when it wants

https://www.tornadoweb.org/en/stable/
https://twisted.org/
https://eventlet.net/

In 2014, Guido van Rossum, the creator of Python, introduced —a standard

package to Python itself, which was meant to be the go-to solution for solving

concurrency problems.

In the early days, asyncio was very similar to the previous cooperative concurrency

packages. Following in the footsteps of its predecessors, it used generators and special

decorators to yield control of other tasks.

To facilitate the cooperative model better, a whole new Python syntax was introduced

soon afterward: async def and await keywords. That addition was what really kicked off

the asynchronous revolution in Python. More on this in the “Asynchronous proliferation”

section.

asyncio

Let’s move on to our transaction example from before, but this time written using the

cooperative approach.

class

def

async def (self, funds: int):

 await

 async def

 if

raise

 await

def

def

return

async def

 await

 AsyncTransactionParty

__init__

_log_deduction

deduct

add

__str__

atransfer

:

 (self, initial_funds: int):

 self._funds = initial_funds

asyncio.sleep()

print()

(self, funds: int):

self._funds - funds < :

 InsufficientFundsError

 self._log_deduction(funds)

 self._funds -= funds

 (self, funds: int):

 self._funds += funds

 (self):

 (

 payer: AsyncTransactionParty,

 payee: AsyncTransactionParty, amount: int

):

 payer.deduct(amount)

 payee.add(amount)

0.01

0

f"Deducted {funds}"

f"Current funds: {self._funds}"

asyncio

An example of cooperative concurrency

18

The current state

of concurrency

in Python

async def

for in

await

def

 (

 payer: AsyncTransactionParty,

 payee: AsyncTransactionParty,

 amount: int,

 transactions: int,

):

 coros = [

 atransfer(payer, payee, amount)

 _ range(transactions)

]

 asyncio.gather(*coros)

 ():

 payer = AsyncTransactionParty()

 payee = AsyncTransactionParty()

 asyncio.run(

 asynchronous_transaction(

 payer,

 payee,

 amount= ,

 transactions= ,

)

)

 print(

)

asynchronous_transaction

asynchronous_main

200

0

100

3

f"Asynchronous transaction. Payer: {payer}. Payee:

{payee}"

19

The current state

of concurrency

in Python

When run, this code also suffers from the same problem that the thread version had: no

exception is raised and the payer ends up with a negative amount of money.

However, it’s a lot easier to reason about than preemptive concurrency.

 It’s enough for us to track all the places where code is awaited

and after a while, we’re pointed to the method where there’s a race condition

between checking the balance and updating it.

Some classes of problems are eliminated, though. For example, in the asyncio version of

the code, there’s no possibility for a race condition to occur in the function. There’s

no awaiting there, so we may be certain that the method is safe to call concurrently.

So as you

can see, cooperative concurrency isn’t a magical solution to all concurrency problems.

What’s important this time around is that the source of the problem is highlighted and

much easier to debug.

deduct

 add

Cooperative

vs. preemptive

concurrency

Asynchronous

proliferation
 Python’s asynchronous world is still growing. Every day, thousands of people contribute

to making Python more asynchronous and faster.

The most rapidly growing part of the ecosystem is Some

of them are created to be lightweight and super fast, whereas others are all-in-one

giants.

web development frameworks.

If you want to find out which frameworks are the best choices for asynchronous

programming, read on!

Micro web frameworks

We can describe them in two phrases: lightweight and super fast. In most cases, only

simple amenities are provided, such as an HTTP client and server with base helpers to

process requests and responses.

Don’t be misled, though! These frameworks can be used to build very scalable solutions.

Why scalable? Because enforced project architecture won’t limit you, since it doesn’t

exist!

It’s completely up to you how you structure your codebase and what dependencies you

use. This is why more complex frameworks use them as a foundation to build upon.

¿¨ As the switch happens only in precise moments, the cooperative approach avoids the

bugs, race conditions, and other nondeterministic dangers that frequently occur in

nontrivial threaded applications¨

©¨ For the race conditions that are unavoidable and inherent to concurrent problems,

cooperative concurrency highlights the places where they may happen, therefore

making them much easier to debug¨

¾¨ The cooperative model offers a simpler programming paradigm to support many

thousands of simultaneous socket connections, including being able to handle many

long-lived connections for newer technologies like WebSockets or MQTT for Internet

of Things (IoT) applications.

20

Let’s summarize this comparison of preemptive and cooperative concurrency by

answering the following question:

 There are three main reasons:

why is the cooperative approach better than the

preemptive one?

Asynchronous

proliferation

Such frameworks are often built on microframeworks. They’re a little slower but bundle

more tools for developers.

If you need

a fast, easy-to-develop, maintainable solution with a big community, pick one of those.

 As a result, they speed up the development process and are

better for maintenance.

They don’t include every possible amenity, though. Still, as a developer, you have to be

familiar with the Python ecosystem to build a complex solution using them. You won’t

find built-ins like ORM, user authorization, etc. in this tier. Having said that, they’re

prepared to connect with many packages, and there are often ready-to-use third-party

solutions to help you out in case of any problems.

Representatives of this group are: FastAPI, Falcon, Molten, tornado, and hug.

We have mentioned “more tools” above. Okay, but what does it mean? What are those

tools? Let’s take FastAPI, for example—the most promising framework in this group. What

does FastAPI give to developers? Among others:

High-performance, developer-friendly frameworks

All-in-one frameworks

21

The most prominent examples of this group are: aiohttp, sanic, and Starlette. They’re not

very popular, but any of them is a perfect choice for small applications (e.g.

microservices).

If you need a super fast HTTP client or server, and developer-friendly utilities don’t

matter to you, don’t hesitate—trust one of these.

In this group, you can find frameworks that provide you with an extensive ecosystem,

third-party or built-in (e.g. ORM, user authentication, and authorization modules).

æ Automatically generated API documentation in the OpenAPI and ReDoc formatÑ

æ Great editor support, thanks to type hints and docstringÑ

æ Validation of data based on Python type hintÑ

æ Great dependency injectioÏ

æ Ready-to-use middlewares

https://fastapi.tiangolo.com/
https://falcon.readthedocs.io/
https://moltenframework.com/
https://www.tornadoweb.org/
https://www.hug.rest/
https://docs.aiohttp.org/
https://sanic.dev/
https://www.starlette.io/

Asynchronous

proliferation

Other tools

22

The development process using these frameworks is fast, but the final product isn’t as

scalable as implemented in the previous library types.

That being said, the aforementioned frameworks haven’t been rewritten to be fully

asynchronous yet.

Here we have frameworks like Django, Flask, and Pyramid. They’re the best choices for

MVP applications when you want to have working software fast and you aren’t afraid of

suboptimal performance. 

 This is because they have a vast legacy codebase. It will take some

time to implement every module, class, and method in a new way. We can observe that

framework authors handle this transformation in two ways: full or step-by-step rewrite.

For example, in Flask and Pyramid, you can use async features only with asgiref

 and helper functions (you can read more about it in the

“Migration guide” section). Unfortunately, this approach requires a lot of work.

This may be the reason why the creators of Flask decided to reimplement this framework

and share it as a new one—Quart, which is recommended for building fully asynchronous

Flask-like projects.

Django goes another way. Its contributors have been trying to reimplement every part of

the framework to be more asynchronous. The first implementation of asynchronous

Django came with version 3.0, which brought asynchronous views. Currently, in version

4.1, we have the ASGI server, asynchronous views, and the first iteration of asynchronous

ORM.

However, migration is ongoing, so in many places, developers have to remember about

sync-to-async and async-to-sync adapters to make the whole application work correctly

(you can read more about it in the “Migration guide” section).

sync_to_async async_to_sync

Frameworks aren’t the only tools that are becoming asynchronous. We can observe

migration to asynchronous code in ORMs and database drivers, message queue clients,

networking libraries, and testing frameworks. Every new reimplementation of a library

makes Python more asynchronous. We won’t have fully asynchronous applications as

long as the ecosystem isn’t implemented in the new way—the asynchronous way.

https://docs.djangoproject.com/
https://flask.palletsprojects.com/
https://docs.pylonsproject.org/projects/pyramid/
https://github.com/django/asgiref/
https://quart.palletsprojects.com/
https://docs.djangoproject.com/en/3.0/topics/async/#asynchronous-support
https://docs.djangoproject.com/en/4.1/releases/4.1/
https://docs.djangoproject.com/en/4.1/releases/4.1/

Use cases of

asynchronous

Python

23

Python is a good fit for many use cases. Does this statement apply to concurrency, as

well? As we’ve mentioned in the “Why and when is concurrency needed?” section, we

need it to improve the performance of an application that involves many I/O operations.

If you have to process data in batches or pipelines, doing it asynchronously may be a

waste of time. The same applies to the command line programs. Why? Because you’ll

probably want to transform data from one form to another by executing synchronous

steps. Your program won’t move on without results from the previous step. To sum up,  

 Web applications and APIs are the best examples of it. Does

one user have to wait for the answer when another one asks about something different?

Definitely not! These operations can be run independently, meaning they can be run

asynchronously, too.

These tools mostly don’t

have to wait for the previous operation to finish. They can ask the provider for the next

object and process it concurrently.

 Let us describe it using an example.

You want to turn on the lights in the entire house. If you implement it synchronously,

you’ll send the message to every bulb and wait for the response before you call the next

one. What’s the effect? The lights turn on one by one. Nice for one room but it can take

minutes to illuminate the entire building. The solution is to call all the bulbs

asynchronously. You don’t need to wait for the responses and your program will work “at

the speed of light.”

So it makes sense to ask: does your code really need concurrency?

all operations that use the CPU intensively don’t fit in an asynchronous way.

Where does concurrency fit, then? Whenever you have many operations that can be

executed independently.

The same rule applies to web scrapers and API aggregators.

Are there any other use cases? Yes, IoT.

Is that all? Definitely not. There are many cases where asynchronous Python will be a

good fit. Not as many as Python itself has, but still a great deal. We’re sure that after

reading this section, you’ll find a whole bunch of new use cases. For now, let’s move on

to the migration guide.

When would you want to migrate to asynchronous Python? In most cases, this should

happen once the performance of your application decreases (because of blocking

operations your code performs).

you can’t just call asynchronous code from

synchronous code directly

You’ll quickly find out that the best way to speed up

your application is to make it work concurrently.

The idea of a major refactor may be daunting. We’ve undergone this process and

completely understand your fear. Luckily, it’s never too late to migrate to asynchronous

Python.

Of course, there are many things to migrate. Don’t worry, though. We’ll break down the

required steps for you.

The first rule to keep in mind is that

 (and otherwise). This is why you shouldn’t migrate the entire

codebase at once. It’s best to perform it in small steps.

The following examples will help you conduct the migration in a safe way. Fasten your

seatbelts and let’s go!

Firstly, let us show you how to migrate synchronous code to an asynchronous one.  

 Run the code

and observe what happens:

The first step is to add an async keyword before the function definition.

As you can see, the Python interpreter will warn you that the coroutine object isn’t

awaited. Let us fix this issue:

async def

def

 (): 

 print()  

 ():  

 async_function()  

main_function()

async_function

main_function

"Hello!"

RuntimeWarning: coroutine 'async_function' was never awaited

async_function()

async def

async def

await

 ():

 print()

 ():

 async_function()

async_function

main_function

"Hello!"

Synchronous to asynchronous

24

Asynchronous

Python

migration guide

This example may seem trivial, and you’re right—it is. What we wanted to show is that

once you start introducing async functions, you have to consistently do it all the way to

the last function in the call stack. 

Just remember, don’t apply it blindly everywhere. Do it only when the function at the

bottom of the call stack is a blocking operation. Replacing this blocking function with an

async counterpart will unlock the full potential of concurrency. 

Sometimes you may be faced with the necessity to call synchronous code from an

asynchronous context. For example, it may happen in the case of calling a third-party

library, which doesn’t provide an async interface. Calling such code from an

asynchronous function doesn’t produce any warning. 

What’s more, it will freeze your event loop completely. Because of that, all other

coroutines will have to wait rather than happily run in a concurrent fashion. You have to

always remember that async is turtles all the way down.

While migrating the codebase, you may find yourself in a “halfway-through” situation

where part of your code is synchronous and the other part is asynchronous. It may be

complicated to distinguish which way you have to call a specific function. Moreover, the

code will be further migrated. Luckily, you can prepare an adapter to deal with this

problem. But first, let’s investigate the issue:

async def

 await

def

async def

return await

await

await

 ():

 asyncio.sleep()

 print()  

 ():  

 time.sleep()  

 print()

 (func):  

 func() 

adapter(async_function)

 adapter(sync_function)

async_function

sync_function

adapter

1

1

"Asynchronous!"

"Synchronous!"

Asynchronous! 

TypeError: object NoneType can't be used in 'await'

expression

asyncio.run(main_function()) # Hello!

Adapters

25

Asynchronous

Python

migration guide

As you can see, we’re not able to call the synchronous function with the await keyword.

How do we deal with it? You can use asyncio to check if a

function (or method) has to be called with the keyword:

iscoroutinefunction()

await

The adapter fixed the most annoying migration problem!

Asgiref is delivered by the Django project, but you can use it standalone. A full list of

supported or incoming asgiref implementations can be found in this documentation.

Does the previous example solve all sync-to-async migration problems? Unfortunately,

no.

 asgiref.

Sometimes you can’t change the code you are calling. It can be a third-party library

or your own code that you can’t alter for whatever reason.

What to do then? Check out This Python library provides helpers to translate

communication from sync-to-async and async-to-sync. Let’s see how it works in

practice:

async def

if

return await

else

return await

None

adapter(func):

 asyncio.iscoroutinefunction(func):

 func()

 :

 asyncio.get_event_loop().run_in_executor(

 func=func, executor=

)

from import

from import

def

async def

 await

 asgiref.sync sync_to_async

 third_party_library external_sync_function

 r():

 external_sync_function()

 ():

 external_sync_function_wrapper()

@sync_to_async

external_sync_function_wrappe

main

await

await

adapter(async_function)

adapter(sync_function)

Asynchronous! 

Synchronous!

Asgiref helpers

26

Asynchronous

Python

migration guide

https://www.djangoproject.com/
https://github.com/django/asgiref/blob/main/docs/implementations.rst

You may be wondering right now: is migration really worth the hassle? We have seen

that throughout Python’s history, best practices for concurrency have changed a few

times. Does it mean that in the near future you’ll be forced to migrate once again?

Have you ever wished you could predict the future? If the answer is “yes,” then follow

along. We’ll reveal the secret of fortune-telling. At least when it comes to Python.

Over there, you’ll find a list of upcoming changes as well as documents describing

Python standards, ideology, best practices, etc. It will tell you a lot about Python’s future.

The best place to find information about the nearest future of Python is the Python

Enhancement Proposals site (widely known as PEPs).

Now, let’s investigate PEPs together and check out the key info on asynchronous

implementation.

Python 3.11 brings massive changes in concurrency implementation. On the one hand,

the old asynchronous implementation is finally defunct. On the other hand, asyncio finally

gets on par with its newer peer trio in regard to implemented features.

Let’s discuss these changes together.

The first one seems unimpressive but is still very important: PEP 594—Removing dead

batteries from the standard library.

PEP 594 definitely closes the “first async standard library in Python” chapter in the

history of Python. The modern async Python uses asyncio as its asynchronous base.

What does it mean? Asyncio is finally becoming the only standard library for Python

asynchronous programming.

It’s about cleaning up the deprecated asynchronous

implementation using asyncore.

The future is now: Python 3.11

Asyncore removal

27

The future of

asynchronous

Python

https://peps.python.org/
https://peps.python.org/
https://peps.python.org/pep-0594/
https://peps.python.org/pep-0594/
https://docs.python.org/3/library/asyncore.html
https://docs.python.org/3/library/asyncio.html

You’ll find a revolutionary change for Python concurrency in Python 3.11. It’s broadly

defined in PEP 654—ExceptionGroups and except*. At last, we can put the nightmare of

clumsy exception handling for concurrent operations behind us!

In the past, this feature was the advantage of curio and trio. In asyncio, it was very

problematic to deal with the concurrent tasks exceptions. How did it look before Python

3.11? Let’s take a look:

Here, we are trying to download three files. The important part is calling the

 method. Because of that, these three commands will be

executed at the same time—concurrently.

What happens if every function from the example above raises an exception?

Unfortunately, only the first exception will bubble up and asyncio will detach from the

gather function, so you’ll lose reference to your tasks (they will run in the background).

Of course, there is a workaround for this problem, but it isn’t perfect and requires more

time and effort from the developer to catch and process exceptions.

 Thanks to this feature, asyncio will

raise an ExceptionGroup that contains all of the exceptions raised instead of one

exception. How does it work in practice?

Firstly, we have to make a small change to the code. Instead of using ,

we will use , which we describe further in the “Structured concurrency”

section. Now, our example is ready to catch all of the exceptions at once:

asyncio.gather get_file

asyncio.gather

TaskGroup

This is where PEP 654 comes in. It delivers the ExceptionGroups, TasksGroups, and

except* syntax to improve this particular situation.

Exception groups

28

The future of

asynchronous

Python

async def

await

get_files():

 asyncio.gather(

 get_file(),

 get_file(),

 get_file(),

)

'https://some_external_service/file2312'

'https://some_external_service/file3423'

'https://some_external_service/file4542'

https://peps.python.org/pep-0654/
https://curio.readthedocs.io/
https://trio.readthedocs.io/

Of course is optional and backward compatible. You can still catch single

exceptions using the good old except. If you don’t catch all of the exceptions from the

ExceptionGroup, the rest will bubble up and can be caught (or not) in other parts of the

code. Quite neat, isn’t it? 

If you’d like to know more about it, check out Łukasz Langa’s webinar at the PowerIT

Conference hosted by STX Next.

except*

What’s more, in Python 3.11, the structured concurrency concept known from trio will be

finally available, too.

In the case of asyncio, this supervising object is called (just for reference, in

trio they called it).

So now, whenever one of the tasks in the TaskGroup fails with an exception other than

CancelledError, all other tasks in this TaskGroup are canceled. We’ll show you how it

works on a simple example:

In short, it’s an idea that implies enforcing concurrent tasks to be

managed by an outer supervisor.

TaskGroup

nursery

try

 async with as

except

except

:

asyncio.TaskGroup() task_group:

 task_group.create_task(

 get_file()

)

 task_group.create_task(

 get_file()

)

 task_group.create_task(

 get_file()

)

* SomeError:

* AnotherError:

'https://some_external_service/file2312'

'https://some_external_service/file3423'

'https://some_external_service/file3578'

Do something

Do something

Structured concurrency

29

The future of

asynchronous

Python

import

async def

 await

 raise

asyncio 
 

():

asyncio.sleep()

RuntimeError

task_1

0.1

https://youtu.be/Lfe2zsGS0Js
https://docs.python.org/3.11/library/asyncio-task.html#asyncio.TaskGroup

We can see the definition of three tasks, wherein the first one raises after

0.1s. Because all three are run from within , when fails, and

 are canceled. Using , and would have to be

canceled manually. This can be easily missed and may be a source of subtle bugs.

Using TaskGroup, we can be certain that all tasks are finished once the context manager

scope has exited. This works for all children, which are spawned by TaskGroups created

from within the parent. You can imagine it as a tree of tasks that all get canceled

whenever one of them fails unexpectedly.

RuntimeError

 task_group task_1 task_2

task_3 asyncio.gather task_2 task_3

Parent

Child

Child

Child

async def

 try

 while True

await

 except

async def

 try

 while True

 await

 except

async def

 try

 async with as

 except

 ():

 :

 : 

 asyncio.sleep()

 asyncio.CancelledError:

 print()

 ():

:

:

 asyncio.sleep()

 asyncio.CancelledError:

 print()

 ():

 tasks: list[asyncio.Task] = []

:

asyncio.TaskGroup() task_group:

 tasks.append(task_group.create_task(task_1()))

 tasks.append(task_group.create_task(task_2()))

 tasks.append(task_group.create_task(task_3()))

* RuntimeError:

 print()

asyncio.run(main())

task_2

task_3

main

0.1

0.1

"Task 2 got canceled"

"Task 3 got canceled"

"Got RunTime error but that was expected!"

30

The future of

asynchronous

Python

TaskGroup raises ExceptionGroup, so you may handle whichever exceptions you need

with new syntax. However, if the exception raised is or

, then it will be raised as rather than .

This is because these two exceptions are a valid way to terminate your program and are

very often handled by libraries using except statements.

except* SystemExit

KeyboardInterrupt Exception ExceptionGroup

Timeouts

import

async def

 await

async def

 await

async def

 try

 async with as

 except

 asyncio

 ():

 asyncio.sleep()

 ():

asyncio.sleep()

 ():

:

 asyncio.timeout(), asyncio.TaskGroup()

task_group:

 task_group.create_task(task_1())

 task_group.create_task(task_2())

 asyncio.TimeoutError:

 print()

asyncio.run(main())

task_1

task_2

main

10

7

2

"Timeout happened"

31

The future of

asynchronous

Python

Another great concept that Python 3.11 borrows from trio (trio calls it cancel_scope) is

called timeout in asyncio nomenclature. Let’s jump straight into an example, and we’ll talk

about its intricacies a bit later:

Just like the aforementioned TaskGroup, timeouts are implemented as an async

context manager.

Now, you may be scratching your head, thinking that asyncio already had a mechanism

like this. Indeed, we had , but it was far less powerful

The principle of this operation is simple: nothing in the scope of

timeout can take longer than the value passed to timeout, otherwise the inner tasks will

get canceled.

 because it

canceled only one coroutine, which was directly passed.

Timeout will now obediently cancel all tasks in its scope and all nested tasks that might

have been invoked by tasks from the upper layer. (Remember the task tree concept from 

TaskGroup? It worked exactly the same.)

asyncio.wait_for

https://docs.python.org/3.11/library/asyncio-task.html#asyncio.Timeout

32

The future of

asynchronous

Python

Additionally, the return value of can be assigned to a variable and

used to programmatically change the deadline of timeout.

 asyncio.timeout

asyncio.timeout is

definitely a tool that will simplify the logic of your concurrent applications.

There are some changes that won’t be applied in the next Python release, but it’s very

possible they will come in the near futurej

Y PEP 568—Generator-sensitivity for Context Variables concerns the problem of context

variables when using generators. It isn’t a big change for asynchronous Python, but

the implementation of asynchronous generators may change because of itj

Y A similar change may affect iterators as PEP 533—Deterministic cleanup for iterators

mentions. According to the PEP, this change should be integrated as soon as possible.

Currently, resource cleanup when using iterators isn’t effective.

In some situations, it may release resources after garbage collection, and not when the

iterator stops work. There’s a workaround for a non-asynchronous code, but it can’t be

applied to asynchronous generators. That’s why it’s an urgent case.

One thing is certain: Python will be more asynchronous in the future.

This will be a big step and we’ll probably soon come to a point where the asynchronous

way becomes the standard way for developing web applications and APIs.

 The largest growth

will be visible in web application development. What’s more, we’re sure that Django

contributors will finish their work on making the Django framework fully asynchronous.

 There are

still many things to rebuild in an asynchronous style, but we’re sure that it will inevitably

happen.

We can even observe this process right now. For example, SQLAlchemy is becoming fully

asynchronous. Currently SQLAlchemy’s async is a beta feature, but it’s just a matter of

time.

As you already know, the async style of programming is viral. Once applied in one place

of the codebase, it forces parts of the other layers to be migrated, as well. This is why,

over time, we’re bound to see newly written libraries (including Python standard libraries)

being created as asynchronous. Everyone who wants to build an asynchronous

application will need them.

What changes are on the horizon?

Our view of Python’s asynchronous future

https://peps.python.org/pep-0568/
https://peps.python.org/pep-0533/

33

Summary and

final thoughts

on asynchronous

Python

This “need” for asynchronous libraries will push their development forward.

Python’s journey in concurrency development has been long and exciting. Finally, we

have arrived at the place where we can call Python a very well-suited language for

asynchronous development.

Its ecosystem has adapted to the concurrent programming paradigm remarkably quickly,

and now we have a plethora of async packages to use, with the new and shiny

structured concurrency and syntax for exception groping on top of that. These additions

make the implementation of concurrent programs easier than ever.

That in return is what makes Python one of the best languages in the domains of web

development, scrapping, IoT, and many others where the asynchronous paradigm is

prevalent.

The Business
Impact of Python
3.11’s Performance
Boost

Maciej Urbański
Expert Python Developer

@ STX NEXT

chapter 03

Introduction

Python and its

complex

relationship with

performance

Python is a widely used, high-level programming language known for its simplicity and

flexibility. However, it isn’t necessarily renowned for its speed.

Nevertheless, due to its numerous advantages, it’s a popular choice for many different

types of projects, including web development, data analysis, machine learning, and

scientific computing.

Recently, a new version of Python, Python 3.11, has been released, bringing with it long-

awaited performance improvements. This release not only enhances the developer

experience by introducing extra language features, but also offers real cost savings for

businesses that use Python in their operations.

Additionally, I’ll share my personal strategy for when and how to upgrade to Python 3.11,

drawing on my years of experience and insights gained from discussions with my

coworkers.

In this chapter, I’ll explore the areas where Python 3.11 will have the greatest impact and

discuss how businesses can benefit from upgrading to the new release.

When choosing a programming language, there are several things to consider, such as

how well it performs in a specific domain, whether it will still be widely used in the next

10 years, and if it provides the necessary performance.

While Python is often praised as the language of choice when it comes to quickly

prototyping, developing MVPs, and expanding them into full-fledged platforms, one of

the main criticisms has always been its performance.

In toy benchmarks, Python falls short when compared to “close to the bare metal”

languages like C, or even more advanced languages like Java or C# that also offer

garbage collection.

One of the main challenges with Python’s performance is its dynamic nature, which

means that many operations can’t be optimized at compile time, but rather have to be

evaluated at runtime.

Python’s key performance challenges

35

Python and its

complex

relationship with

performance

This dynamic nature, which allows for fewer statements required to implement the same

business logic, is one of the things that leads to slower execution times, particularly for

larger or more complex programs.

Unlike statically typed languages such as C++ and Java, Python is dynamically typed,

meaning that variable types are determined at runtime. This flexibility can make Python

code easier to write and maintain, but it also results in slower performance compared to

statically typed languages.

Another factor that contributes to Python’s performance issues is its reliance on garbage

collection. To manage memory efficiently, Python uses a garbage collector to

automatically free up memory that’s no longer being used by the program.

While this means that developers don’t need to worry about memory management, it also

leads to additional, often unpredictable, delays in program execution and higher resource

consumption during execution of the program.

In practice, this means that while developing a product in Python may be cheaper, the

infrastructure costs needed to run it may be higher.

Python—or, more specifically, its de facto standard implementation, the CPython

interpreter—has made significant progress in improving performance and introducing

solutions to these issues since its creation. Having said that, it still often falls short when

compared to other languages in terms of execution time, especially those that are

compiled, like C or Java.

 For example, a long-standing and effective

technique for speeding up Python is… not to use Python, but rather C extensions, which

are compiled code exposed as Python modules, bringing C-like speed to the Python

world.

This allows for the creation of low-level APIs in a highly performant programming

language and high-level logic in an easy-to-write language like Python. The NumPy

package is the most famous example of this technique in action.

To counter these issues, the CPython interpreter has a number of features that can

help circumvent Python’s limitations.

This is how Python has

been able to maintain its popularity in the machine learning world, where high

computational throughput is essential.

36

Python’s solutions to performance issues

Python and its

complex

relationship with

performance

How big

companies

use hacks and

optimizations

to save money

when using

Python

However, if your project is primarily written in Python and you can’t use generated

computational libraries to represent your business logic, this technique may not be of

much use to you.

Even in an age where Moore’s Law no longer governs yearly CPU speedups, development

cost is often a more important factor than performance cost, especially in new and

upcoming projects. Thus, most companies choose Python over more CPU-efficient

languages and likely will continue to do so. 

Once your product gains traction and you need to support more users, the cost of

growing your infrastructure increases and the question of performance becomes more

important. This is when Python’s slowness becomes more noticeable, and you begin to

look for a possible solution.

One way to demonstrate Python’s lack of speed is to show how many projects and hacks

have been developed to address this very problem.

The most well-known project to make Python faster is an alternative interpreter named

PyPy. While aiming to be a drop-in replacement for CPython, PyPy is always a few

versions behind. For example, the latest Python release is 3.11, while PyPy currently

supports only Python 3.9.

This means that not all new and shiny features of Python are available if you go with that

interpreter, and some libraries may not even work at all. Especially C extensions can be

troublesome to run under PyPy, which is ironic because a faster interpreter may prevent

you from running the most performant Python modules available.

There are many more such initiatives, all with some caveats. To name a few: Numba (JIT

for a subset of ScientificPython), mypyc (type-annotated Python-to-C-extension

compiler), Nuitka (different compromise similar to mypyc), nogil (CPython fork without

the GIL proof-of-concept).

Unfortunately, none of these are a good “default” choice for your next Python project.

37

The trade-off between development and performance

costs in Python projects

How big

companies

use hacks and

optimizations

to save money

when using

Python

Python compatibility, as often defined by, “Does it behave like CPython?” is one of the

main factors that prevent the development of a performant Python interpreter or

(trans)compiler. Therefore, most of them either focus on a subset of the language or

openly state that they aren’t fully compatible.

This is an issue, since Python’s main strengths are its native language features, which

enable its expressiveness, as well as its vast library of reusable libraries built over the

years and accessible to anyone through PyPI.

A good indicator that both Python and its performance are important in a commercial

context is the attention that big companies pay to this problem.

CPython developers are very aware of the performance of the Python interpreter and

closely monitor it, as it’s easy to introduce a feature that may contribute to overall

slowness, which would be counterproductive.

Therefore, CPython is benchmarked every time a new change (big or small) is introduced

and the results are published on speed.python.org.

Companies implement hacky solutions to save on infrastructure costs. These hacks are

often very specific to a particular workload and can only be achieved after pouring

countless hours into debugging and performance testing.

One of the best examples would be Meta (Facebook) who worked hard on their own fork

of CPython, called Cinder, which they use to run Instagram. While it was released as a

way to give back to the community, it was never intended to be a fully compatible and

safe drop-in replacement. Some improvements from it have been merged into the main

CPython branch, but others couldn’t be, as they would break backward compatibility.

Another example of business efforts to address the issue was Instagram who famously

disabled the garbage collector for their Python web servers in order to improve the

performance of their Python code. This move allowed them to reduce their Django-based

app server fleet by 10% while handling the same number of users.

That being said, not every company can dedicate this much development time to

resource optimization.

. So what has happened and changed in that area?

The main purpose of choosing Python in the first place is to

lower the cost of software development by reducing the amount of time spent by

engineers implementing new features

38

Python’s

ambitious goals

for improvement

https://speed.python.org/
https://github.com/facebookincubator/cinder
https://instagram-engineering.com/dismissing-python-garbage-collection-at-instagram-4dca40b29172

In 2020, Mark Shannon, one of the CPython core developers, publicly announced a 4-

stage plan to make Python 5 times as fast as it was before the release of version 3.10.

Such a high speedup is almost unprecedented, but the basis of the plan is quite simple.

Each stage is designed to deliver approximately 50% speed, thus the cumulative speed

after all four stages is expected to be around five times the original speed, or, as the

original proposal specified, “1.5 ** 4 ≈ 5.”

This isn’t an effort that can be done as a volunteer project. Thankfully, as noted before,

commercial companies have a vested interest in making Python fast. 

To that end, Microsoft has employed Guido van Rossum, the original author of Python

and now retired Python leadership figure, along with Mark Shannon and a team of other

engineers with the purpose of making this a reality.

By visiting speed.python.org, you can already see the results of these efforts:

CPython core developers are constantly striving to make the CPython interpreter even

better, with each recent version of Python becoming a little bit faster. However, with the

latest Python 3.11 release, things have improved significantly. The future looks similarly

optimistic, as the so-called “master” development branch again shows a sizable

improvement.

On that note, let’s take a closer look at what’s available today in Python 3.11.

39

Python’s

ambitious goals

for improvement

The vision of a faster CPython

The current state of things: Where is Python now in terms

of speed?

Normalized cumulative test execusion time (lower value means faster executions)

Ratio (less is better)

master

branch

3.8

3.9

3.10

3.11

https://github.com/markshannon/faster-cpython/blob/master/plan.md
https://github.com/markshannon/faster-cpython/blob/master/plan.md
https://speed.python.org/

This speedup is, of course, only the beginning and not the end goal for “Faster CPython

Team” and other CPython core developers. In addition to these efforts, CPython

developers are also working on implementing new features and technologies that can

improve the performance of Python programs.

For example, they’re working on implementing support for Just-In-Time (JIT) compilation,

which can greatly improve the performance of certain types of code by compiling it to

native machine code at runtime.

For multithreading, which was always painful due to the Python GIL, hope comes in the

form of PEP 703, which foresees GIL being “optional” by Python 3.12. This would make

threading in Python a viable way to implement concurrency.

While GIL had always been a part of CPython, this problem was largely considered

solved. This was done by using concurrency models other than threading for machine

learning and other types of computation that need maximum performance only

achievable by sharing memory between workers. However, it still was an issue. This PEP

represents the first step in the main Python implementation to address it.

The tricks to make Python faster don’t end at the interpreter, as language syntax itself

can also help Python programs be more efficient, such as the somewhat controversial

“walrus” operator (introduced in Python 3.8) or the new “match” statement (3.10).

While it will always be a goal to keep Python syntax neat and readable, we can also

expect more of such improvements in the future if they contribute to the goal of making

Python a more efficient language.

Overall, the CPython developers are going to use a combination of strategies to make

Python faster, including optimizing the interpreter, making changes to the language itself,

and implementing new features and technologies.

These efforts are aimed at improving the performance of Python programs and making

the language more attractive to developers, business owners, and end users alike.

40

Python’s

ambitious goals

for improvement
How CPython developers are making Python faster

The reported speedup isn’t uniform and highly dependent on the benchmark used, but

it’s almost always visible and ranges from 10% to 60%.

https://peps.python.org/pep-0703/
https://docs.python.org/3/whatsnew/3.11.html#whatsnew311-faster-cpython

While switching to Python 3.11 may not automatically reduce infrastructure costs, it can

have a significant impact on serverless applications. 

The performance improvements in Python 3.11 can have significant benefits for projects

that use Python in their tech stacks.

This means that your app doesn’t necessarily need to deal with machine learning or big

data to see the improvements. In fact, since these should have already been covered by

C extensions, you’re more likely to see these improvements in the native Python

implementation of your business logic.

As a result, you’ll be able to process more with less, reducing the amount of time and

resources required for these tasks. This could lead to cost savings in terms of reduced

computing power and infrastructure costs, as well as improved efficiency and

productivity for your business.

 The new features and improvements in

the release are designed to make it easier to write high-performance Python code,

making the language more attractive to developers and users alike.

What everyone gets, though, is more responsive applications. Regardless of the cost of

running your application, if it’s faster, your user will be happier. Now, does that mean you

can expect all of your HTTP requests to be processed 10–60% faster?

Again, it depends. The easiest way to check is to just test it out. But if you can’t and have

to guess, analyze the current bottlenecks of your applications. Is the most time spent in

Python code or maybe on I/O like querying a database? Depending on this answer, you’ll

know how much speedup you can expect.

Unlike more specialized optimizations, CPython

3.11 is between 10–60% faster than the 3.10 release in various benchmarks across the

board.

In addition to the potential cost savings, Python 3.11 is also meant to enhance the user

experience for developers and users of Python.

41

Expected gains

and savings of

Python 3.11 in the

real world
How much speedup can I expect in my Python app?

How do application deployment models influence cost

savings from using faster Python?

In this section, I’ll take a closer look at the impact Python 3.11 has had on companies

worldwide. First, I’ll discuss potential performance improvements in your project, then

move on to the business benefits of Python’s latest release.

However, most Python projects are not run under a serverless model due to the high

startup costs of Python apps (which, by the way, are one of things improved by 10–15%

in Python 3.11).

In this case, the savings from faster Python may not be as significant, particularly if the

instances (servers) are manually allocated. It doesn’t matter much whether your project

uses bare-metal hardware, VMs (e.g. AWS EC2), or some cluster services (e.g. AWS

ECS). What matters most here is whether your project is in a place where you use some

kind of autoscaling solution, which automatically scales up your infrastructure

horizontally with the workload.

If so, then you should observe, at best, similar results as with the serverless model. The

more server instances you have while using autoscaling, the more noticeable the results

will be. If we’re talking about fewer than 10 concurrent instances, don’t expect to see a

difference.

Conversely, if your instances are manually allocated, then there most likely isn’t much for

you to gain here in terms of infrastructure costs. My assumption here is that if they’re

manually allocated, then you have fewer than 10 instances, so you can’t just “cut” 10% of

resources.

You’re better off treating the speedup you gain as more room to breathe before you have

to scale up again, assuming the success of your project and more users or workload in

the future.

Of course, you should monitor your infrastructure and app loads using basic tools like

Nagios and Zabbix, or more in-depth Datadog/New Relic-like products, and make

decisions based on data gathered through them.

To reduce the risks involved in upgrading, it’s important to have a continuous integration

tool like Github Actions or Jenkins and monitoring solutions like Sentry or Datadog. 

42

Expected gains

and savings of

Python 3.11 in the

real world

Assessing and managing risks and benefits when

upgrading to Python 3.11

When using most serverless cloud offerings, the main part of the bill is directly

proportional to execution time (e.g. Google Cloud Functions, Azure Functions, AWS

Lambda). Therefore, if your app runs 10–60%, you can expect your bill to be lowered

proportionally to the processing time reduction, excluding any storage and third-party

services costs.

https://docs.python.org/3.11/whatsnew/3.11.html#faster-startup
https://cloud.google.com/functions/pricing
https://azure.microsoft.com/en-us/pricing/details/functions/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/

It’s also important to note that the performance gains (10%+) from the interpreter alone

may not necessarily translate into a significant difference in your application’s

performance.

Factors such as I/O bottlenecks, infrastructure costs, and application scaling should also

be taken into consideration when assessing the potential impact of upgrading to Python

3.11. Additionally, you shouldn’t expect savings in infrastructure if the costs aren’t directly

proportional to application performance (i.e. you don’t use serverless or autoscaling).

Nonetheless, the improved performance of the interpreter will always provide more

breathing room for your solutions until you need to look into application performance.

The release of Python 3.11 offers significant performance improvements and cost savings

for businesses and organizations that use Python in their operations. These cost savings

can translate to larger profit margins.

How to determine if upgrading is worth it?

Think about the long-term perspective of your project and any dependencies that may

not yet be compatible with Python 3.11. If patching these dependencies or waiting for

them to become compatible is worth the investment of time and resources, then it may

be best to hold off on upgrading.

 If that’s the case, upgrading is definitely worth it, as you’ll be

leaving money on the table otherwise. However, if not, being patient might make more

sense.

However, it’s important to consider the specific needs and workloads of your project

before deciding to upgrade to Python 3.11.

On the other hand, if your project utilizes a fleet of servers or serverless functions,

upgrading to Python 3.11 as soon as possible to take advantage of the cost savings may

be the better choice.

43

Expected gains

and savings of

Python 3.11 in the

real world

Final thoughts

on the business

impact of

Python 3.11’s

performance

boost

These tools will allow you to properly judge the tipping point of the costs of running older

versions of Python (i.e. dependencies compatibility and release maturity) versus newer

releases (i.e. speed improvements and development convenience features).

This will be especially useful later, as you’ll have to make similar decisions with upcoming

releases that show significant promise in terms of speedups and backward compatibility.

If you don’t feel ready to adopt the new release just yet, my advice would be to add it to

your issue tracker and let your developers pick Python 3.11 migration tasks whenever it’s

most convenient for them. They’re the people best equipped to estimate the cost of such

a migration. Having that ticket set up will also serve as a reminder for you that the

migration should happen at some point.

44

Final thoughts

on the business

impact of

Python 3.11’s

performance

boost

Ultimately, it’s important to weigh the potential benefits and costs of upgrading and

make a decision based on the specific needs of your project.

Maximizing Value
with Python:

MVP Development
in the Software
Industry

chapter

Łukasz Wolak Marek Melzacki
Senior Python Developer Senior Python Developer

@ STX NEXT

04

https://intranet.stxnext.pl/user/view?user_id=1643

Introduction

What is an MVP?

In today’s ever-growing software industry, most businesses are in need of reliable, highly

functional applications to support their in-house procedures. 

Companies that invest in software want to see results fast to ensure they’re putting their

money to good use. An idea is just an idea until it’s put into practice. You can study the

target group and estimate potential profits, but these are just speculations until your

product is built and your clients decide if it’s a worthwhile investment. 

As developers, we prove our value by delivering high-quality code, though without

bringing business value to your app, quality doesn’t mean much. To increase our chances

of providing you with the best services, we should focus on technical skills while also

improving our understanding of your business and its context. 

A bright future awaits developers who invest their time in developing communication

skills, learning about business problems, and writing the best code. Being Python

developers, we have the advantage of leveraging the various possibilities and solutions

that Python offers. 

As of 2023, Python continues to be one of the most popular programming languages in

the world, with a gigantic community and a multitude of packages and libraries. It can be

used for writing automation scripts, web development, data processing, machine

learning, and many more.

These days, everybody’s building or planning an MVP, so we’re sure you’ve already heard

that term multiple times. But what does it actually mean? 

An MVP is a product, or, to be more precise, a version of a new product with just enough

features to be usable and verifiable by users or potential customers. The goal here’s to

launch your product as quickly as possible and collect the maximum amount of feedback

with the least effort on the team’s side. After receiving enough feedback, you’ll know if

your product or idea has any real potential.

We’ll guide you through the complex process of developing an MVP in Python and

introduce the business cases you may find in your projects. We’ll begin with the

definition of an MVP (Minimum Viable Product), ways to think about it, and questions to

ask yourself before starting. Next, we’ll provide a technical overview of MVP

development with examples of case studies to show you the approaches we’ve taken,

so you can adapt them to your needs.

46

What is an MVP?

Why build an

MVP? What do

you gain from it?

Why should

developers think

about the

business

context?

An ideal MVP should be>

D built fast?

D of high quality?

D cheap to develop.

Realistically speaking, it’s an accomplishment to achieve even two of these

characteristics. We can build a good product quickly, but it won’t be cheap. We can also

build something cheap and fast, but the quality may be questionable. Finally, we can try

building a quality product at a low expense, but time may not be on our side. 

As it’s almost impossible to achieve all three criteria, it’s important that you strategize and

determine the optimal course of action. So, how can we make it happen?

The purpose of an MVP is to test if your idea or product will work as expected and if your

clients will like it. Your team will want to gather feedback from them as quickly as

possible and ensure that your product helps you achieve your goals. 

It’s more effective to collect feedback from actual users of the product rather than relying

on hypothetical responses from surveys. Your picture of the product might greatly differ

from how it’s perceived by others. 

Even showing mockups and describing how your app works doesn’t provide a true sense

of the product for people outside of the project. That’s why building a working version of

the product for them to try out is the best way to gauge its effectiveness in solving their

problems.

At this stage, we’re not discussing technicalities. Our focus is solely on the business

aspects because that’s what an MVP is for. But you might be wondering, should software

developers even care about these things? Why are we talking about business instead of

delving into technical aspects? 

Archimedes once said, “Give me a lever long enough and a fulcrum on which to place it,

and I shall move the world.” In our opinion, if you want to grow as a developer and

become an expert in your field, you need to understand things that go beyond technical

knowledge. Building an MVP is one of those things.47

Why should

developers think

about the

business

context?

As developers, we have the skills and capabilities to bring revolutionary ideas to life.

However, the crucial thing is knowing where to start and where to go. We should all work

on big ideas that have the potential to benefit our projects and businesses. To achieve

this, we must leave mediocrity behind and focus on things that truly matter.   

To illustrate this point, let’s consider an example of how to identify profitable features and

those that will only drain energy and resources from the project.

Imagine you’re building a platform that allows users to exchange items with one another.

Users can store all their tradeable items in the system, and the platform generates

revenue whenever users exchange goods. To make this process as easy and

straightforward as possible, we want to provide users with multiple communication

options.

The main point is that users need to be able to perform transactions. To facilitate this,

the platform supports three communication optionsZ

X direct messages within the app]

X comments under the postings of the exchangeable objects]

X a new feature exclusive to the app: audio/video calls.

The creator of the idea assumed that implementing audio/video calls would revolutionize

communication and make the negotiation process faster and easier, ultimately leading to

increased revenue. 

Having said that, before implementing functionalities like audio/video calls, we need to

consider the potential impact. We can roughly estimate which communication feature will

be more costly to develop, but the client may still insist on implementing that particular

feature. 

It’s important to recognize that not all users will utilize this feature. If only a small number

of users end up using it after we’ve invested significant time and effort into implementing

it, then it won’t have helped us achieve our primary objective of making it easier and

faster for users to perform transactions.

Therefore, we suggest creating a button like, “I want to use the audio/video feature.” This

will provide us with the necessary data to decide what percentage of users might want

to use it. If enough people click the button, then it’s worth expanding the feature. 48

Sample MVP idea in practice

Why should

developers think

about the

business

context?

This approach allows us to make informed decisions about which functionalities to

prioritize while keeping the users’ needs and objectives in mind.

Simply put, “I want this feature” is a business experiment. The goal’s to gain knowledge

about the users and verify feature ideas. 

Developers can benefit greatly from understanding user behaviors and tendencies. By

monitoring the system or conducting A/B tests, we can determine which parts of the app

are being used more often.
 

These areas are likely to be expanded in the future, so it’s essential to make the code

base there easier to develop. Additionally, we may need to optimize the code to ensure

that it performs well and consumes fewer resources. 

It’s important to avoid implementing code that may not be useful at all. To do this, we

need to understand the business side of the project and the implications that a given

feature will have.
 

When in doubt, don’t be afraid to ask questions! Over time, as we become more familiar

with the project and the needs of the users, our intuition will improve and guide us

through each step of the development process.

Building an MVP allows you and your team to verifye

d if you’re going in the right directiona

d if your users are using the application as intendeda

d if your product is meeting customer needsa

d if the way your team is solving problems makes sensea

d if there are any other issues that your users might find necessary to implementa

d if it’s worth starting to fully develop your product now.
 

That being said, those benefits aren’t limited only to the business side of the coin. They

also have implications for the software development process.

49

What do business experiments mean for software

developers?

What do you gain from developing an MVP?

MVP vs.

proof-of-concept

vs. prototype

Let’s go back to the situation where only a very small number of users utilize a feature

that took a lot of effort to implement, such as the audio/video communication feature. In

that scenario, we need to investigate what went wrong. Some possible reasons might be

that:

Therefore, getting user feedback as soon as possible is crucial. As developers, we should

focus on building features that matter to users and bring value to your product. We

should cut unnecessary expenses on features that don’t work and allocate the resources

where the return on investment will be better.

T the users weren’t aware of the featureY

T the feature was hard to findY

T the feature wasn’t marketed effectivelyY

T the users simply didn’t like it and preferred other communication options.

Many people use the terms MVP, proof-of-concept, and prototype interchangeably, but

they’re actually different things. Expert-level developers who want to understand the

business context of programming should be able to use them correctly. Here are some

quick definitions:

As we mentioned earlier, an MVP is a fully functional product that’s ready for deployment.

Although it may have only a few features, it’s usable by users outside of the team or

company. An MVP solves a problem or provides the functionality it’s supposed to verify. It

also handles all possible situations that the user might find themselves in and all their

interactions with the system.

A proof-of-concept (POC) is used to verify whether something is possible in our project,

technology stack, and so on. POCs are mostly used as internal technical projects.  

For instance, suppose we want to incorporate an external audio/video call provider into

our app. To that end, we would integrate some library or package with our system or a

system with a similar structure and tech stack to determine if it’s even possible or how
50

Why should

developers think

about the

business

context?

MVP

Proof-of-concept

MVP vs.

proof-of-concept

vs. prototype

easy it would be. In that case, we would mostly be doing coding work and configuration. 

The end result of the POC would be a working integration with this specific service

provider. However, it’s also crucial to define what we want to prove in the POC and what’s

unimportant in this process. 

All we want to prove here’s that it’s possible to make an audio or video call using our app.

As a result, the proof of concept shouldn’t focus on the frontend side or user experience

in general. 

Most of the unhappy paths and potential problems the user might encounter while

attempting to connect will be ignored. Errors, timeouts, connection issues, and other

things will be addressed later when we decide to implement it fully. For now, we’d only

demonstrate that it can be done. The next step is to bulletproof the concept.

If we agree that the POC is mostly oriented toward code and technicalities while largely

ignoring the UX, then the prototype will be its exact opposite. Prototypes are primarily

clickable mockups that show how the process or functionality will be implemented from

the user’s perspective. They are low-code or no-code solutions that help stakeholders

understand the concept or design.  

Figma, Zeplin, and Adobe XD are excellent tools for creating prototypes, so it’s easy to

imagine that they will mostly focus on design and UX: clickable elements take you from

one page to another, and the prototype simulates how the system will work and what will

happen every step of the way.

It’s essential to know the definitions of those terms so that you understand the state of

the project your team’s supposed to build. Your individual developers may be using

different names than you for different things.
 

You might want to create a POC, but your developers could be talking about a full-

fledged MVP. This could lead to incorrect estimations and problems later on. It’s in your

best interest to find out what you’re working with.
 

Please be aware of these differences, as we’ll be discussing developing a full MVP in

the following sections.

51

Prototype

What do we gain from understanding these differences?

Approaches to

different MVP

types and

development

process

Once an MVP has served its purpose, there are two main approaches you can take: you

can either develop it further with the same technology stack and tools, or discard the

MVP and leverage the knowledge gained to create a new product with new tools and

technologies.
 

Let’s take a closer look at both options and explore their pros and cons.

Although some may consider this a radical idea, discarding an MVP can actually be very

time-efficient compared to the traditional software development process.
 

Once you know that the idea has caught your interest, your team can start full

development with the knowledge they didn’t have before building the MVP. With this

approach, it’s important to remember that the product may evolve into something

unexpected later on, which may cause some problems.

The second approach means that once you’ve created an MVP and obtained feedback,

it’s time to move on and focus on developing a full-fledged product.
 

Here, you need to consider whether the code

base and product are easily extendable, modifiable, scalable, and maintainable. These

are critical factors to take into consideration when creating an MVP that won’t be

discarded once it serves its purpose.

The biggest difference between the first and the second approach is the short- and

long-term commitment to the code base.

Starting from scratch may not always be cost-efficient, so it’s crucial to make the right

decisions when it comes to technology and architecture. Here are some questions to

consider before delving deeper into developing the MVP further�

 “Does my team have the necessary skills to further develop the product?�

 “How will my project scale up? Can I scale up only one part of my project?�

 “Can I later migrate it to a different server or cloud?�

 “Will the technologies, libraries, and frameworks I chose have long-term support?�

 “How long do I think the lifecycle of the project will be?�

 “Does my company have any existing infrastructure?”

52

ÑÏ Discarding an MVP

2. Developing the MVP further

What are the

tools and

frameworks for

building an

MVP?

: “How will I migrate the data if the databases change?�

: “Should the whole project be developed using the same technology?�

: “What type of developers should my team consist of? Backend developers, frontend

developers, data scientists, data engineers, or machine learning engineers?”

53

It’s important to keep in mind that there will always be tradeoffs between short-term wins

with poor fundamentals in the long-term and slower development with a solid foundation

for the future. That’s why we’ll explore different approaches and help you determine the

best options for you and your project in the next sections.

Python offers a comprehensive set of tools and frameworks for building MVPs in the

software industry. In this section, we’ll explore those tools and frameworks, highlighting

their key features and how they can be used in the development of minimum viable

products. 

Our focus will be on comparing and evaluating those tools and frameworks from the

perspective of maximizing value, so you can choose the best solution for your MVP

project.

Whether you choose to discard or continue developing your MVP, several frameworks

and libraries for web development can be used. The most popular ones are Django, Flask,

and FastAPI.
 

Django is a good choice for building full-stack apps and APIs, while Flask is great for

anything that might be outside the typical CRUD logic. FastAPI is similar to the Flask

approach, but has additional tools and libraries and has been gaining in popularity over

time.
 

 NumPy, Pandas, and TensorFlow are some examples of those, and they provide

a rich ecosystem for building data-driven MVPs that can help you create powerful and

valuable products.

In addition to these frameworks, there are several libraries, packages, and tools that

can be integrated into Python projects in the fields of data engineering and machine

learning.

Frameworks for building an MVP

Approaches to

different MVP

types and

development

process

What are the

tools and

frameworks for

building an

MVP?

54

When cost is one of the major factors and you choose the discard-MVP option, Django is

the most common framework used to build the solution. This framework comes with

“batteries included,” offering developers the ease of rapid development of features, data

models, and other necessary functionalities.

Django is well-suited for situations where the primary focus is on building an application

that works around data input, and custom business logic is a secondary consideration.

This framework offers robust and comprehensive capabilities for data management and

is well-suited for building MVPs that require data-centric functionality.

The architecture of the code that we use to build an MVP is critical to the success of the

product, and it largely depends on the people involved and what’s most suitable for the

current project. When it comes to Python and MVPs, Django is one of the most widely

used frameworks, and its implementation of the Model–View–Controller (MVC)

architecture is particularly effective.

Deploying your application is a crucial step in the software development process, as it

allows users to access your solution. The choice of deployment flow and platform

depends on various factors, such as the expected usage patterns and the resources

available.
 

For example, if you want to verify the success of your MVP quickly, a Platform as a

Service (PaaS) solution like Heroku can be a simple and effective option, as it provides a

hosted platform with built-in components like the database.
 

Alternatively, if you have access to building blocks from a cloud provider, a deployment

platform from that provider may be a better choice, since it can offer more flexibility and

control.
 

For instance, deploying a containerized application to a Kubernetes engine using

community-defined Helm charts can simplify cluster management, and using a DBaaS

solution can provide a scalable and reliable database engine. 

While this approach may be less cost-efficient for running the application 24/7, the “pay

as you go” approach for billing the infrastructure used in the early stages of presenting

the application to end users could be better for you.

Architecture approaches for building an MVP

Deploying your application: strategies and considerations

What are the

tools and

frameworks for

building an

MVP?

55

Model–Template–View (MTV) separates the data model, user interface, and control logic

of an application into separate components, making it easier to manage and maintain.  

However, in the MVC architecture, there’s a lot of coupling, which may make it easier to

write code at first, but could lead to issues during later adjustments and maintenance.

When building an actual application, it’s crucial to think very carefully about code coupling

and to separate each domain or application. In essence, you should strive for a modular

monolith that can be separated into smaller applications later on.
 

To further reduce costs and improve efficiency, it’s a good practice to use bootstrap

templates so that minimal work has to be done on the frontend side, and developers can

focus on providing value.
 

Another approach is to separate the backend and frontend teams when a mobile

application is a part of the MVP solution. The team can decide on an API layer to

communicate between the server-side part of the solution and the mobile app that runs

on people’s devices.
 

When considering the development of an MVP for mobile devices, it may be beneficial to

create a Progressive Web App (PWA). PWAs provide a native app-like experience on

mobile devices, but are web applications that are typically accessed through a browser.

They can be installed on a device for offline use.
 

The advantage of PWAs is that they share 100% of the code base with traditional web

applications, making it easier to develop and maintain the frontend across multiple

platforms. A PWA is a good approach for MVP development, as it allows for a seamless

user experience on mobile devices while leveraging the existing web development skill set.

In addition to selecting the right code architecture and deployment strategy, having the

right set of tools is critical for efficient software development. While the choice of

developer tools may vary depending on the project and developer preferences, certain

features such as code completion, static code analysis, and debugging tools can help

speed up the coding process.
 

One popular choice among developers is PyCharm, which offers a comprehensive set of

features for Python development. However, for those who prefer a more lightweight

development environment, Visual Studio Code is an excellent alternative that can be

customized with plugins to improve the developer experience.

Developer tools for building an MVP

What are the

tools and

frameworks for

building an

MVP?

56

Alternatively, developers who work in pairs and value tight cooperation may find Fleet, a

new collaboration-first IDE from JetBrains, to be a good choice.  

In addition to traditional IDEs, some developers may prefer a text editor like Vim with a

customized configuration to make it a full-fledged IDE comparable to PyCharm or VSCode.

Testing is a critical component of building an MVP and it’s essential to ensure that the

MVP is thoroughly tested on both the code level and the final solution level. In the

Python development ecosystem, the go-to frameworks for preparing necessary tests

are unittest and PyTest.

However, it’s equally important to test the overall behavior and predict test scenarios. To

accomplish this, developers can turn to various tools, such as Selenium, Cypress, and

Cucumber, which provide APIs to simulate user activity in a browser.
 

These tools help guarantee that the application performs as expected, enabling

developers to identify and address issues before they escalate into major problems. The

use of these tools is critical for verifying MVP functionality and ensuring a smooth user

experience.
 

By simulating user activity, potential issues can be identified and resolved before they

impact the end user experience. Additionally, automating testing accelerates the testing

process and reduces the risk of human error, resulting in a more reliable and robust

product.

Having a well-designed user interface can significantly speed up the development

process of any application, including MVPs. Adobe XD, Figma, and InVision are some of

the most commonly used tools for creating designs that can be easily shared with a team

of developers.
 

Clickable prototypes are an excellent way to visualize and test the product, ensuring that

it meets the desired goals and requirements. By using UI component libraries such as

Material UI, Ant Design, or CSS frameworks like Bootstrap or Tailwind, developers can

quickly create a functional MVP with a polished user interface. These tools offer a variety

of pre-built components and templates that can help accelerate development.

Testing the MVP

Design tools for building an MVP

How to choose

tools and

frameworks for

building an

MVP?

57

Moreover, there are many themes and templates available on the market that can be

customized to fit the specific needs of an MVP. These themes often include custom

components like social media cards, carousel galleries, and embeddable maps, which

can help developers create a user-friendly and visually appealing product quickly.

Building a successful product starts with developing an MVP, and selecting the

appropriate tools and frameworks is a critical decision that can significantly affect your

project’s outcome.
 

In this section, we will explore the different approaches to selecting the right tools and

frameworks for your MVP, emphasizing the importance of considering your strengths and

weaknesses, consulting with others, and outsourcing.

When building a product, it’s important to start by assessing your existing resources and

considering what tools and frameworks will best support your project’s vision and goals.

This includes taking into account your team’s skills and experience, as well as any

limitations or biases that may impact your decision-making process.

To make the most informed decisions, it’s also essential to consult with others, whether

it’s through seeking input from colleagues, hiring outside experts, or researching best

practices and industry standards.
 

By doing so, you can stay informed about the latest advancements and potential pitfalls

to avoid. Consulting with specialists who have recently started a new project and/or have

extensive experience with a similar technology stack can help you understand which

libraries or frameworks are worth considering.
 

On the other hand, you’ll learn about the architectures that may seem attractive at first,

but become difficult to develop or maintain over time.
 

Through expert consultation, you can uncover potential issues and learn about the pros

and cons of your choices to proceed accordingly. Remember, the goal is to have a clear

understanding of your options.

Consulting with experts

Approaching the choice of tools and frameworks

How to choose

tools and

frameworks for

building an

MVP?

Approaches to

building an MVP

58

Outsourcing not only provides teams of developers, but also an entire ecosystem of

support, including Product Owners, Scrum Masters, and Quality Testers. An experienced

Product Technology Consultancy (PTC) team can provide an architecture based on their

expertise, helping you understand the advantages and disadvantages of different

approaches.
 

By taking a thoughtful and deliberate approach to selecting your tools and frameworks,

you can help ensure that your MVP is built on a strong foundation that will support your

product’s success in the long run.

Developing an MVP involves choosing an approach that is best suited to the specific

needs and requirements of your project. There are several options available, including

utilizing a pre-made project starter or custom development from scratch.

Although this starter would still require some tailoring to the specific requirements of

your project, it’s a time-saving option compared to starting from scratch.

A popular approach is to use a pre-prepared project starter that includes many of the

common elements and configurations required for most MVP projects. This significantly

reduces the initial setup time, providing a faster development process.  

A sample project starter may include}

| a Dockerized Django app~

| a Dockerized frontend app~

| ready-to-use database configuration~

| and a makefile with commonly used commands.

Project starter

Outsourcing is another option to consider when selecting tools and frameworks,

particularly if you don’t have the necessary expertise in-house. Outsourcing allows you to

tap into specialized knowledge and resources, providing an opportunity to work with

experienced professionals who can guide you through the process and offer solutions

tailored to your unique needs.

Outsourcing

Approaches to

building an MVP

59

On the other hand, despite the initial decision to discard the MVP after serving its

purpose, it may sometimes still become the foundation of the final product. This can

happen due to underestimating the budget required for further development or because

the MVP is well-coded and requires only minor refactoring to be further maintained.  

However, you may have concerns about the potential cost and time involved in rewriting

your MVP from scratch. It’s important to consider the long-term impact of maintaining

your current code base versus making updates and improvements through a rewrite.
 

Initially, the goal of developing your MVP may have only been to quickly deliver features,

which came at the cost of code maintainability. Continuing to add features without

proper attention to code quality could result in a “big ball of mud” scenario where future

maintenance becomes increasingly time-consuming and difficult.
 

To address these concerns, it’s important to weigh the short-term benefits of maintaining

the current MVP against the long-term benefits of a rewrite in terms of cost, time, and

quality. A focused effort on testing and refactoring may make the existing code base

more extendable and maintainable. However, neglecting quality testing could lead to big

changes breaking the application.
 

In conclusion, when building an MVP, it’s essential to choose an approach that fits your

specific project requirements. Going with either a pre-made project starter or custom

development is a viable option. By considering both alternatives, you can build a

successful MVP that meets the needs of your project and its stakeholders.

Pitfalls of keeping an MVP that’s too good to discard

At this point, your stakeholders and development team should analyze the pros and cons

to choose an MVP approach that’s best for their planned solution. If the MVP is expected

to be built upon later, it’s important to spend more time analyzing the solution

architecture during the early stages of design and development. This is crucial to ensure

the maintainability of the MVP in the long-term development of the full product.

MVP approach suited for a planned product

Practical

examples of

various MVP

development

approaches

60

In this scenario, content management and general data manipulation are the primary

concerns, with a projected initial user base of 100–200 users?

� The system is expected to handle different model instances, allowing users to create,

modify, and add comments to content?

� We don’t expect that all users will work on their content simultaneously?

� While providing a single-page application for displaying real-time content updates is

desirable, it isn’t mandatory for the MVP.

Considering these requirements, Django may be a suitable choice to start your MVP.

Here are some of the reasons why: 
S

� It offers simple solutions for data model preparation, such as using existing model

classes, generating migrations, and connecting to a database?

� Asynchronous processing can be added by including Celery or another task queue in

the tech stack.

Without further ado, let’s dive into our case studies.

That’s why Python is an excellent choice for building an MVP. With Python, you not only

get access to the language itself, but also to the entire ecosystem surrounding it—

including production-ready implementations for web development, machine learning,

data science, and data engineering projects. This versatility of Python allows the same

team to tackle a variety of challenges.

Case #1: Content management and minimal business

logic

It’s important to note that the number of Python developers continues to increase every

year, along with the popularity of the language. This means that more frameworks,

libraries, and packages will be improved to meet the growing demand.
 

As you read through the case studies, don’t just stop at our examples. Consider how your

MVP might evolve or what other elements it may require in the future, not just in terms of

the code base. There may be additional needs, such as preparing datasets or crawling

information, that could impact your technology choices.

In order to provide you with a tangible demonstration of how these theoretical concepts

can be applied, we’ve prepared several hypothetical scenarios for creating a project from

scratch. Treat them as guidelines to help you make better decisions on the technology

stack that would best suit your needs.

Practical

examples of

various MVP

development

approaches

61

9 User and permission management is available out of the box, and fine-tuning the

permission model is possible with additional, battle-tested solutions like Guardian6

9 There are many existing libraries that provide essential features, such as payment

integration with Stripe or advanced search capabilities with ElasticSearch.

If the Model–Template–View approach is chosen, which is the default in Django,

additional features can be added with libraries like: 
Q

9 Crispy Forms, which allows forms to be adjusted to the specific needs of the solution>

9 django-ckeditor and django-tinymce, which offer WYSIWYG editing capabilities for

formatted content.

With these requirements in mind, we recommend the following tech stack for this case: 
Q

9 Django backend with a relational database (PostgreSQL, MariaDB, or any other

suitable solution supported by Django)6

9 Either classic template-based views or a separate frontend app in React6

9 Django Admin as a back-office management panel (suitable for typical moderating

actions, user management, etc.)6

9 Deployment on a single VPS or a PaaS solution (e.g. Heroku) with the possibility to

scale up if needed.

Opting for a separate backend and a modern, responsive frontend application may be the

best approach here. The Django REST Framework (DRF) with built-in authentication, data

serialization, filtering, and more will provide the necessary features.
 

When it comes to deploying the final solution, given the requirements of this case, it

seems unnecessary to go beyond hosting the final application on a single VPS.

Containerizing the app (or both apps, if the backend and frontend are split) may still be

worth considering, especially since the development environment is already

containerized (from the project starter mentioned before), and the changes needed for a

production-ready setup would be minor. This approach will pay off the moment the MVP

is successful and a single VPS or instance deployed on a PaaS isn’t enough.

Our goal is to create a system that can track changes in the market for specialized devices

and adjust the prices of our products based on supply, demand, and competitor pricing.

Case #2: Content management system with custom

business logic and heavy processing

Practical

examples of

various MVP

development

approaches

62

5 This system will be used by 20–50 users who will manage the same shared model

instances�

5 The changes are displayed as a diagram with strict rules determining which changes

can occur�

5 The business expects the system to handle consecutive changes occurring in

succession.

After analysis, we determined that the system will likely have 2–3 data models, including

authentication. The main role of the system is to process input data using multiple steps,

with the decision to run a step being determined by the processed data itself.

We recommend using a NoSQL database, such as MongoDB, because it allows related

models to be stored as a single document, reducing the risk of data integrity issues.

Our objective is to aggregate data from multiple sources, compare and sort them by

specific criteria, and display them on a unified platform. It’s critical to avoid serving users

with data older than 5 minutes while striving to be as up-to-date as possible.

In this scenario, a lightweight stack based on FastAPI, Flask, or Falcon will be sufficient.

Here’s why: 
·

5 The selected framework’s lightweight overhead will allow for immediate processing of

input data as soon as it reaches the API endpoint�

5 The business logic can be implemented as pure Python classes, enabling thorough

test coverage for all edge cases that may occur in the processing flow, separate from

the API communication layer�

5 The final results can be persisted using a variety of solutions other than a relational

database, such as Amazon S3 or a NoSQL database, as long as it meets the system’s

expectations.

The proposed tech stack for this solution includes: 
·

5 FastAPI or another lightweight frameworkÆ

5 pure Python for the business logicÆ

5 deployment on a VPS, with containerization as a potential benefit, but not a requirementÆ

5 MongoDB or another NoSQL solution that can store related models as a single

document.

Case #3: Integration between services (service broker)

Practical

examples of

various MVP

development

approaches

63

The objective of a data engineering or data science project is to build an Extract,

Transform, Load (ETL) system that can gather data from various sources, transform it

into a uniform format, and store it in one or multiple databases.

This may involve: 
L

? calling API services regularly;

? collecting data from crawlers on different servers;

? integrating with a data provider to gather data.

To ensure scalability, we’ll deploy the application on a Kubernetes cluster. Additionally,

the frontend application that serves our API should provide a single-page, auto-

refreshing experience that takes into account the maximum latency of 5 minutes.

In this project, our tech stack will include: 
L

? a lightweight API framework (FastAPI/Falcon/Flask or any other suitable alternative)|

? containerized deployment (most likely on a PaaS solution such as Heroku) that allows

us to scale our application quickly as traffic increases|

? plain Python code to fetch and manipulate data using libraries such as Requests or

HTTPX to obtain the required information|

? in some cases, we may use Scrapy or another web crawling solution to gather data

from sources that don’t provide an API but are still valuable to us.

To achieve this, we require a lightweight API framework such as FastAPI or other suitable

alternatives. Below the API layer, we need a per-data provider service to handle specific

cases for each data source. For aggregation of partial results, we can use Redis as a

temporary cache with low performance overhead.
 

Since we don’t need to persist processed data, the key challenge is to establish an

effective cache invalidation strategy to ensure data freshness. We must prioritize fresh

data where possible and be prepared to handle limitations from external services.
 

As the number of users increases, we may need to scale up the infrastructure. Therefore,

we’ll deploy the application in a containerized cluster, allowing us to scale up or down

easily in response to traffic changes.

Case #4: Data engineering or data science project

Practical

examples of

various MVP

development

approaches

64

In this case, we have an ML model used for making API calls to predict the result based on

the data provided by the model.
 

As seen in the previous case study (#4), users won’t produce a lot of content. However,

some additional information may be generated as a byproduct of an API call. For instance,

you may want to log every prediction (if it’s GDPR-compliant) or simply acknowledge the

fact that a user received a prediction, such as a subscription for a specific number of calls

per month or a free prediction every hour.

To create an efficient and effective data collection system, it’s essential to focus on: 
Q

J high scalabilityN

J a lightweight project structureN

J the possibility of breaking down parts of the system into microservices.

The proposed technology stack for this project includes: 
Q

J mini web frameworks like Flask or FastAPI to build the API endpointh

J Docker for easy deployment and scalabilityh

J pure Python code with the option of using PyPy for optimized performanceh

J SQLAlchemy and Alembic for database managementh

J a load balancer to distribute incoming requests evenly across multiple servers.

Scalability is a crucial factor to consider when building such a system due to the

substantial amount of data that needs to be processed. To enable easy deployment

across multiple servers and to manage API calls, the focus should be on a lightweight

and stateless service with minimal overhead. A load balancer should also be used to

distribute incoming requests evenly across multiple servers.
 

Apart from processing data, there may be a need to aggregate it and run cron tasks at

regular intervals, such as viewing data statistics in a dashboard or as graphs. Additional

tools such as Metabase or PowerBI can be used to accomplish this.
 

For search functionality, creating your own search engine would be an overkill for the

MVP. Instead, opt for ElasticSearch, along with a search API that translates queries to ES

queries to return the data. This approach allows all queries to be logged, and access to

data can be granted or rejected based on the user’s subscription or access permissions.

Case #5: Hosting a machine learning model

Practical

examples of

various MVP

development

approaches

65

As you can see, there isn’t much content management involved here, except for the

business logic that limits and handles the API calls. This will generate a lot of data, but it

will only be one type of data.
 

ML models are usually memory-intensive, so it’s a good idea to avoid a system that

requires a lot of CPU power. Instead, a virtual machine with more memory than CPU

speed is needed.
 

It’s also essential to consider the duration of the prediction. If you want to have an MLaaS

(Machine Learning as a Service, which isn’t an official aggregation yet), it’s necessary to

create a model that’s fast, lightweight, and provides accurate predictions.
 

Despite what we’ve previously mentioned, it may be necessary to have several

specialized models. For instance, one model could categorize the problem and choose a

specific ML model to solve it. 

Therefore, instead of a one-size-fits-all model, you can have a specialized collection of

models for each specific task. It’s important to keep in mind that it may not always be

possible, but as software developers, it’s crucial for us to remind ML engineers that using

multiple different models is also an option. Having one excellent model might not be

enough if it needs to have more characteristics to allow your project to be monetized

more easily.

The proposed technology stack here would be: 
h

Y a mini web framework like Flask or FastAPIP

Y SQLAlchemy and AlembicP

Y a machine learning model handling prediction tools, such as PyTorch, scikit-learn, NLP

tools, CV tools, NumPy, and PandasP

Y a caching tool for the same queries to optimize the model usage time.

Final thoughts

on maximizing

value with

Python

A well-crafted minimum viable product can bring immense value to your business.

Software developers play a crucial role in helping companies like yours determine if your

idea has the potential to succeed. To design a suitable MVP, your team needs to know

the details of the planned product.

Final thoughts

on maximizing

value with

Python

66

Python provides a flexible framework for various architectures, such as CMS-like

applications, service brokers, machine learning APIs, and data science projects.

With the growing popularity of Python, there’s a vast repository of existing packages

that can be used to build your final solution. Given the rising number of Python

specialists every year, we expect this trend to continue.

 The

language enables us to add ML features to existing projects and adapt to different

requirements. Additionally, most Python programmers can manage multiple projects,

allowing them to deliver solutions that are both innovative and efficient.  

Part II

The  
Developer
Report

7
experts

30
questions

in the survey

100+
total responses

5
areas

Introduction In 2022, Python reached an all-time high of 17.18% market

share and took first place in the TIOBE Index, continuing its

run as one of the most popular programming languages in

the world.

Python has undeniably taken the lead in a wide range of tech-related fields: web

development, data analysis, machine learning & AI, system administration, software

testing & prototyping, desktop development, network programming, and many other

domains. This shows that it’s the top industry choice at the moment.

That made us think: how amazing would it be to bring together over 100 Python experts

to gather all their knowledge of Python’s current state as well as the changes coming in

the future?

So that’s what we did. We asked our Python specialists about the situation of the

language, its future, and the most interesting trends emerging in the area.

Below you’ll find the results of the first official Python Tech Radar survey conducted at

STX Next, Europe’s largest Python software house. Our talented group of software

developers who live and breathe Python answered 30+ questions to share what’s coming

up for the most popular programming language.

Check out the report to find out their invaluable insights on what’s going to shape the

future of the Python world!

68

Seniority and experience

of the respondents

Who
answered
the survey?

report 01

0170

Regular and senior

Python developers

shape the industry

Monitoring the expertise of developers utilizing

the tools and languages companies rely on is a

key aspect of understanding and improving the

skills of their teams.  

 ,

  

 

Our survey results show that over half of the

respondents identify as

while a significant portion identify as

among the respondents

suggests that our company, as well as the industry as a

whole, holds a wealth of talented and experienced

professionals well-versed in Python.

regular developers (54.9%)

senior developers

(34.3%).

The high percentage of regular, senior, and expert

developers (overall 95%)

Regular Python Developer 54.9%

Expert Python Developer 5.9%

Senior Python Developer 34.3%

3.9%Junior Python Developer

1%Trainee

Regular Python Developer

54.9%

What is your seniority level?

Senior Python Developer

34.3%
Expert Python Developer

5.9%

Junior Python Developer

3.9%
Trainee

1%

0171

Real-life, commercial

experience counts

One of the key measures of a developer’s

experience and expertise is the number

of commercial projects they have worked on.

In our survey, we asked the respondents how

many such projects they have worked on so far.

,

The results show that the majority of respondents have

worked on while a significant

portion have worked on A

smaller percentage of respondents have worked on

with

Overall, these results show that

attesting to the strong

foundation of knowledge within the industry and the

talent and professionalism of Python developers.

It also highlights the respondents’ commitment to

delivering high-quality software solutions for their

clients.
 

 1–5 projects (53.9%)

6–10 projects (28.4%).

11–

15 projects (7.8%), 5.9% having worked on 16–20

projects and 3.9% on more than 20 projects.

almost half (46%) of

the respondents have worked on more than 5

commercial projects,

1–5 53.9%

11–15 7.8%

6–10 28.4%

5.9%16–20

3.9%More than 20 projects

1–5

53.9%

In general, how many commercial projects

have you worked on so far?

6–10

28.4%
11–15

7.8%

16–20

5.9%
More than 20 projects

3.9%

01

Marcin Zabawa
Director of Core Services

Expert commentary

A glance at the years of experience, seniority, and number of

completed projects can provide valuable insight into a developer’s

work style and aid in evaluating the qualifications of potential team

members.

Typically, developers work on one commercial project per year, this pattern is

evident up to the senior level. If the number of completed commercial projects

significantly exceeds the number of years of experience, it may suggest a lack of

depth in the programmer’s engagement or that the project was small-scale, which

doesn’t favor the effective development of skills.

On the other hand, high-level experts sometimes work on multiple projects per

year. This is often a part-time, long-term engagement as an advisor or reviewer of

technical decisions made by a team. It can also be a short, but intense,

intervention engagement.

The results also reveal the profile of an average senior developer, a professional

with at least 4 years of experience who has completed more than 5 commercial

projects. Developers who call themselves seniors

but do not meet these criteria should be thoroughly

checked before being added to the team.
 

72

0173

Diverse perspectives

drive successful teams

When it comes to evaluating a developer's

expertise, the number of years of experience

they have in coding is an important

consideration. In our survey, we asked

respondents to share their experience level in

this area.

The results show that

while

Almost 1 in 5 developers have 7–9 years of experience

(16.7%), and the same is true for those with

These results demonstrate the wide range of

experience levels among the developers, with a large

portion having more extensive experience in the field—

All in all, the majority of the survey respondents have a

significant amount of Python experience, with some

fresh perspectives from less experienced developers

mixed in.
 

33.3% of respondents have 1–3

years of experience, 32.4% have 4–6 years.

10 years or

more (17.6%).

65.8% of respondents have more than 5 years of

experience.

1–3 33.3%

7–9 16.7%

4–6 32.4%

17.6%10 years and more

1–3

33.3%

How many years of experience do you have in coding in general?

4–6

32.4%
7–9

16.7%
10 years and more

17.6%

01

Mikołaj Lewandowski
Expert Python Developer

Expert commentary

Years ago, Robert C. Martin estimated that the number

of programmers doubles every five years, leading to the conclusion

that half of the people working in the field have less than five years

of experience.

When a company has more experienced developers than the industry average,

it must be aware of the challenges related to this situation.

The modern world relies heavily on software, which creates a high demand

for new software engineers who are both reliable and proficient. To meet these

requirements in an industry with a high turnover of inexperienced programmers,

a company must develop a strategy of building healthy, balanced teams where

craftsmanship practices are emphasized and experienced professionals guide

younger colleagues. Less experienced developers are also important as they bring

in a breath of fresh air, original ideas, and a non-conformist attitude, which

experienced experts sometimes lack.

The graph illustrates a healthy balance in experience distribution. This approach

requires substantial knowledge and experience  

in management, but the results are worth it.

74

Python
now

report 02

State of the language

and general usage

0176

Python’s simplicity and

versatility wins over

developers

Python is an incredibly powerful and widely used

programming language; developers love it

because it’s simple, versatile, and accessible.

Businesses of all sizes and industries, on the

other hand, are drawn to Python for its reliability,

flexibility, and scalability.

(79.4%) chose Python for its clean and concise

syntax,

(64.7%) cite Python’s

ease of learning as a key factor in their choice.

50%), the ability to quickly prototype

In our survey, we asked the respondents why they

chose Python as their go-to language. 

The results reveal that an overwhelming majority

which makes it easy to read and write code.

In fact, many of the developers

For others ideas

is a major advantage of Python.

(

Why did you choose Python?
(select max. 3 answers)

17.6%It is dynamically typed

14.7%It is a scripting language

4.9%
For new career

opportunities

4.9%It has wide use cases

2.9%It is perfect for ML/AI/DE

1.9%
Because of the numerous

libraries and frameworks

1.9%
It has a great community

and support

64.7%It was easy to learn

79.4%I like the syntax

1.9%Other

50%It is easy to prototype

1007550250

Developers take notice

of Python’s evolving

ecosystem
 

Python has come a long way in recent years, and developers have taken notice. In our survey, we

asked the respondents what has changed in Python for the better.

recent growth and success.

The majority of respondents as a key reason for Python's

A similar number

Other notable improvements include

Overall, the respondents’ insights highlight the dedication of the Python community to supporting and advancing

the language, which is a big part of the reason why both developers and businesses are choosing Python as their

programming language of choice.

(69.5%) cite the better tool ecosystem and support

(63.7%) point to the availability of better third-party libraries for

domain-specific problems.

performance enhancements (42.2%), backward compatibility (11.8%), and

increased security (6.9%).

What has changed in Python for the better in recent years that makes it a good choice when it wasn’t before?
(select max. 3 answers)

69.5%Better tool ecosystem & support

42.2%Performance

63.7%
Better third-party libraries for domain-specific

problems

11.8%Backwards compatibility

6.9%Security

6.9%Type annotations

1%Increasing popularity

1%Great features coming with every new release

1%The main advantages haven’t changed

0 20 40 8060

0178

Unique performance

issues remain a key

challenge for Python

users

Python is undoubtedly a top programming

language at the moment, but it comes with its

own set of unique challenges.

Every software development company knows the

difficulties of staying up-to-date with the latest

technologies and best Python practices. The best way

to address this issue is to ask the team about the

biggest challenges they currently face when using it.

The majority of respondents

, while a significant

number

 as a major challenge. These

results highlight the importance of optimizing code and

improving performance when working with Python.

They also speak to the ongoing efforts to expand the

use of Python beyond smaller companies and startups

and into larger, more established organizations.

No language is perfect, and Python is certainly no

exception. But Python’s unique position as an open-

source and widely adopted language means it’s well-

positioned to proactively address any challenges that

the future may bring.
 

(65.75%) cite

performance as a key challenge

(37.3%) identify the difficulty of embracing

the enterprise market

0

20

40

60

80

Lack of default,

go-to frameworks

or tools for certain

problems

Legacy

code

2.9% 2.9%

I don’t have

anything

in mind

13.7%

Security

37.3%

Embracing

the enterprise

market

65.75%

Performance

0.9% 0.9%

Dynamic

typing

What are the biggest challenges of using Python right now?
(select max. 2 answers)

01

Marcin Zabawa
Director of Core Services

Expert commentary

What makes Python particularly appealing now is exactly what has

been achieved by initially sacrificing its performance.

Great features such as a low learning curve, fast prototyping,

and a unique syntax are inherent in the nature of Python,

and performance was the cost that had to be paid for that.

However, Python’s performance is a widely debated topic and it’s not a problem

that remains unaddressed. The performance of Python is continuously improving,

and users are recognizing and appreciating this. This survey clearly shows this.

The same is true for the enterprise market. While Python is well-suited for it, there

are a few challenges that arise when using it in this context. Once again, however,

some of them are old labels automatically, though wrongly, associated with this

language.

That being said, with the constant evolution of Python, these challenges are

being mitigated. This is sure to lead to increased use in various areas, many of

which will be closely related to the enterprise market.

I think that’s inevitable.

79

0180

Python is closely

associated with web

development

Python is a language that has it all. From web

development to data engineering and machine

learning, there s nothing it can t handle.

’ ’

web development emerges as the top

use case for Python, with a whopping 85.3% of

developers indicating that they use it primarily for this

purpose.

A smaller number (7.8%) use it mainly for data

engineering, while a few (2.9%) use it primarily for

machine learning or command line interface tools.

So it comes as no surprise that developers use it for a

wide range of projects and purposes. That’s why in our

survey, we asked the respondents what exactly they

use Python the most for.

Unsurprisingly,

 This is a testament to Python’s strength as a

language for building robust and scalable web

applications. 

From building dynamic websites to harnessing the

power of data and machine learning, Python is an

invaluable tool for the continued growth of the world of

tech.

Web development 85.3%

Machine learning 2.9%

Data engineering 7.8%

2.9%Command line interface tools

1%Web scraping

Web development

85.3%

What do you use Python the most for?

Data engineering

7.8%
Machine learning

2.9%

Command line interface tools

2.9%
Web scraping

1%

0181

Developers choose the

best Python versions to

stay current and

backwards compatible

It’s clear from the results of our survey that the

majority of the respondents are using fairly

recent (but also well-established) versions of

Python, with 3.8 and 3.9 being the most popular

at 50% and 52%, respectively. This is a good

indication that the surveyed developers are

staying current with the latest developments in

the language and are well-equipped to handle

the demands of modern software development.

However, it’s also interesting to note that a significant

portion of respondents are still using version 3.6 and

3.7 at 17.6% and 23.5% respectively. We can even see

version 2.7 being used.

 while also showing their ability to work

with legacy code, an important aspect of the software

development industry.

This suggests that there may

be some projects or legacy code that still rely on older

versions of Python.

Overall, the surveyed developers’ usage of Python

versions showcases their dedication to adapting to

the ever-evolving landscape of software

development,

0

20

40

60

80

2.7

10.8%

1%

3.4

1%

3.5

17.6%

3.6

23.5%

3.7

50%

3.8

52%

3.9

73.5%

3.10

14.7%

3.11

Which Python version do you use?
(select max. 3 answers)

01

Maciej Urbański
Expert Python Developer

Expert commentary

A high percentage of Python 2.7 users is a sad reminder that this

version is still commonly used in legacy projects despite its official

End of Life. While Python 2 won’t be anyone’s choice for the next

project, we can’t forget about it just yet.

Python 3.6 was the first to surpass Python 2.7 and since its release, upgrading to

newer versions has been both more rewarding and not nearly as problematic as it

was when transitioning from version 2 to 3. The rapid uptake is mostly due to the

“killer features” such as the “f-string” in Python 3.6. Apparently, developers

appreciate the added convenience.

It’s worth noting that this survey was conducted around the release of Python 3.11.

So, why do we see so many users for a version that had barely made it out of the

door? Python 3.11 brings significant performance improvements, which is a huge

benefit for both developers and businesses using Python in their operations.

82

Python developers

embrace the evolving

feature set of the

language

Python 3.7, which was released on June 27, 2018,

introduced a new feature called “dataclasses.”

These provide a foundation for object-oriented

code without the need for boilerplate. It’s clear

from the results of our survey that this feature

has become widely used based on the 84%

adoption rate among the respondents.

Additionally, a year later, Python 3.8 introduced

the “Walrus operator,” which was met with initial

controversy and led to Guido van Rossum’s resignation

from his role as Benevolent Dictator for Life

of the Python core development team.

Finally, the “pattern matching” feature was released in

late 2021.

 This feature greatly simplifies nested “if”

statements, resulting in simpler and more concise

code, which is a goal many Python developers strive

for.

Despite this,

developers have come to appreciate the convenience

of the := operator, with a 58% adoption rate in our

survey.

Although developers have had just under 2

years to become familiar with it, 33% have already

used it.

83 Python 3.7 Dataclasses

0

20

84.3%

58.8%

32.4%
40

60

100

80

Which new Python features do you use?
(you can select all the 3 answers)

Python 3.8 Walrus operator Python 3.10 Pattern matching

Education &

development

report 03

How the respondents grow their skills

0185

Developers place

a strong focus

on maintaining their

proficiency in web and

software development,

ML, and AI

Continuous learning is a key aspect

of a successful software developer’s

career—of that there can be no doubt.

The survey results indicate that

and are the most commonly

pursued areas of study,

 respectively.

Furthermore, almost has

completed courses in and

, reflecting the increasing industry demand

for these skills.

Overall, these results show that the surveyed

developers are dedicated to staying up-to-date

with the latest technologies and best practices,

and are committed to honing their skills in rapidly

evolving fields.

web development

software development

with 66.7% and 64.7%

of respondents having completed courses in these

disciplines,

1 in 3 respondents (29.4%)

machine learning artificial

intelligence

What courses have you finished? Select the disciplines in which

you completed at least one course
(select max. 3 answers)

16.7%Data engineering

2.9%Game development

11.7%
I haven’t finished

any yet

0.9%ICT

0.9%General scripting

2.9%DevOps

66.7%Web development

29.4%ML/AI

64.7%Software development

0.9%Blockchain

80
6040200

0186

Self-learners dominate

the programming

landscape

Learning to code is a journey that’s unique for

each individual. In our survey, we found that self-

learning is the most popular method among the

respondents, with a whopping 93.1% of Python

developers saying they taught themselves how

to code.

Online courses and books are also popular choices,

with 55.9% and 52.9% of respondents

45.1% of developers having learned to code through

tertiary education or university.

 using these

resources, respectively.

For some, traditional education also played a role, with

 Other popular

methods included mentoring from friends or family and

secondary education.

These results show that while there are many different

paths to becoming a programmer, self-education is

going to be a big part of your journey whatever path

you choose—it’s almost unavoidable. What’s important

is that the surveyed developers have the drive and

determination to keep learning and growing their skills.

How did you learn programming?
(select max. 3 answers)

15.7%
Mentoring from

friends or family

52.9%Books

2.9%
By working on

commercial projects

1.9%
Learning by teaching

others

0.9%
Conferences,

workshops, meetups

0.9%Postgraduate education

0.9%Stack Overflow

45.1%
Tertiary education/

University

5.9%Coding bootcamp

15.7%Secondary education

55.9%Online courses

93.1%Self-learning

1.9%Primary education

1007550250

Python developers

prioritize ML and DE

in professional

development
 

When it comes to professional development, the results of our survey show that developers are

primarily focused on honing their technical skills. A majority of respondents, 53%, indicate a desire

to improve in software development, while an even greater number, 75.5%, express a desire to

improve in software architecture.

What’s important,

. This reflects the growing trend in the

industry towards incorporating these technologies into various applications and systems, and the surveyed

developers are eager to keep up with the demands of the market.

However, it’s not just technical skills that developers are seeking to improve. A considerable portion of

respondents,

 as areas they would like to improve.

data engineering and machine learning also rank high on the list of desired areas for

improvement, with 1 in 4 respondents expressing interest in these fields

18.6%, aim to improve their communication skills, while others (27.5%) cite leadership and

(19.6%) mentorship/teaching

Which of the following areas would you like to improve the most in?
(select max. 3 answers)

0

52%Software development

75.5%Software architecture

23.5%Data engineering

24.5%Machine learning

18.6%Communication

27.5%Leadership

19.6%Mentorship/teaching

11.8%Business

10 20 40 6050 10030 70 9080

01

Krzysztof Sopyła
Head of Machine Learning

and Data Engineering

Expert commentary

As the report shows, to stay ahead of the curve in the constantly

advancing field of technology, developers must make a concerted

effort to acquire and develop new skills, particularly in the areas of

AI/ML and data engineering.

Most Python developers understand the high demand for these skills and the

potential they hold for the future job market. For many, transitioning to these fields

after years of experience in web development can be an exciting stage in their

career path.

The survey results are encouraging, showing that many of the surveyed

developers have already completed courses related to data processing. However,

the journey of learning AI skills is never complete, as the field is constantly

evolving with new advancements.

Investing in AI/ML and data engineering skills is a wise career move for

developers and crucial for organizations in the modern business landscape.

As these technologies continue to shape the way companies operate and

88

drive innovation, having a team capable of

harnessing their power will be a key differentiator

for success in the industry.

0189

Over 40% of developers

spend more than

4 hours a week

on learning

The continuous process of learning and

developing skills is vital for any developer who

wants to excel in their field, and our survey

results show that respondents are dedicating a

significant amount of their time outside of work

to this pursuit.

The majority of developers

 on learning.

, and

 a week. Additionally,

 to learning, which shows a strong

commitment to skill advancement.

This level of dedication to learning is a testament to the

importance the surveyed developers place on staying

current with the latest technologies and best practices

in the industry, as well as going beyond and choosing

new directions.

(74.6%) spend between 1–6

hours a week Nearly half (42.2%)

dedicate 1–3 hours one-third (32.4%) of

developers spend 4–6 hours

9.8% of respondents dedicate more than a staggering

10 hours a week

1–3 hours a week 42.2%

>10 hours a week 9.8%

4–6 hours a week 32.4%

8.8%< 1 hour a week

6.9%7–10 hours a week

1–3 hours a week

42.2%

How many hours a week do you dedicate to learning?

4–6 hours a week

32.4%
>10 hours a week

9.8%

< 1 hour a week

8.8%
7–10 hours a week

6.9%

Developers’ favorite

training activities are

hands-on and self-driven

Our survey asked respondents to select their top three preferred methods for improving skills and

staying current in software development. The results are clear: hands-on experience is the way to

go.

An impressive 69.6% of surveyed developers choose working on commercial projects and 63.7% choose

working on their own projects

reading books and doing code challenges are preferred by 23.5% and 20.6%, respectively.
 

 as one of their top 3 learning and training activities. This highlights the importance

of practical, real-world experience in the software development industry.

However, around one-third of developers also choose to take courses and read tech articles, indicating that a

balance of theoretical and practical knowledge may be the key to success. Other traditional methods, such as

Which training and learning activities do you prefer?
(select max. 3 answers)

0

63.7%Working on my own projects

69.6%Working on commercial projects

35.3%Doing courses

23.5%Reading books

20.6%Code challanges

11.8%Discussions

26.5%Doing tutorials

11.8%Meetups

33.3%Reading tech articles

20 40 60 80

0191

Soft skills make all the

difference: challenging

the stereotype of

a typical Python

developer

In our survey, logical, abstract, critical and

analytical thinking topped the list as the most

important skill, with 32.4% of respondents

choosing it. This is closely followed by

persistence, readiness for continuous learning,

and being ready for challenges, each with

around 13.7% of the vote.

All in all, 8 out of the top 10 skills indicated as most

important by our respondents could be considered soft

skills, and only 2 are hard skills.

These results challenge the stereotype of a developer

being someone who solely possesses technical skills.

These skills are useful for a variety of

reasons, such as improving teamwork, solving complex

problems, and adapting to new tools and technologies.

This indicates that the best Python developers are

those who can combine technical expertise with strong

problem-solving abilities and a drive to constantly

improve and learn.
 

The data suggests that soft skills, such as patience,

communication, and a knack for experimenting are

just as important for becoming a great Python

developer.

(select max. 3 answers)

What skills are, in your opinion, the key to becoming a great

Python developer?

403020100

13.7%Readiness for continuous learning

9.9%Following Python best practices

8.8%A knack for experimenting

11.8%

Effective learning, adaptation,

and use of new features and tools

(libraries, frameworks, etc.)

9.9%Curiosity

32.4%
Logical/abstract/critical/analytical

thinking

13.7%Being ready for challenges

12.7%Communication & language skills

8.8%Patience

13.7%Persistence

01

Jakub Kołaczkowski
Senior Python Developer

Expert commentary

The key is to maintain a sane balance. Imagine a Python developer

who has all the cutting-edge technologies and solutions at their

disposal. The urge of using all these tools can be overwhelming,

but it’s important to remember that they may not always align with

the client’s current needs. So work out a solution that will

ultimately satisfy both parties.

Additionally, it’s important to strive to create a work environment that fosters

feedback. Publicly praise others for their hard work, provide constructive criticism,

and be open to receiving feedback yourself. This will improve your work

environment and encourage taking ownership of errors.

Time management and organization are also critical skills for a Python developer,

especially when working remotely. Establish a routine, prioritize tasks, and set

reasonable time limits. Delivering forecasts that are accurate and achievable

impacts your personal credibility, therefore, while it’s great to be able to deliver

extra, it’s important to remember that it shouldn’t be at all costs.

92

Tools &

technologies

report 04

The respondents’ views  
on current tech stack options

0194

Python developers

choose effortless version

control

Having the ability to effectively manage different

Python versions is important for Python

developers. It allows them to work with the

version that’s most suitable for each project,

without having to worry about compatibility

issues. Adhering to industry standards also

ensures that their projects are portable and can

be easily deployed to different environments.

When it comes to our survey,

The dominance of pyenv can be attributed to its ease

of use and versatility, as it allows developers to easily

switch between different Python versions on the same

machine and manage virtual environments for each

project. Docker, on the other hand, offers the ability to

containerize Python applications and make them

portable, which is particularly useful for deploying to

different environments.

the majority of

respondents use the pyenv tool, with 46.3% choosing

it as their preferred method. Docker is a close second,

with 40.7% of respondents using it. Installing the

Python version by hand was chosen by only 4.6% of

respondents, just like the option, “It depends on the

project.”

pyenv 46.4%

I install them by hand 4.6%

Docker 40.7%

4.6%It depends on the project

3.7%Conda

pyenv

46.4%
Docker

40.7%
I install them by hand

4.6%

It depends on the project

4.6%
Conda

3.7%

How do you manage different Python versions?

When it comes to

maximizing the benefits

of Python upgrades,

balancing stability and

innovation is the key
 

The timing of adopting a new Python release can be a tricky decision for developers, as our survey

shows.

On the one hand, we have the early adopters: 27.5% of developers believe in jumping on a new release as soon

as their project’s CI tests start passing with it, and 14.7% wait until after the first patch release. But the rest of

our respondents take a more conservative approach: 20.6% prefer to wait for a year or longer before making the

switch. Others adopt a new release after one newer version has been released (24.5%), after two newer

versions have been released (5.9%), or even until the previous version reaches End of Life (3.9%).
 

This balanced distribution of votes between the two groups (42.2% early adopters vs. 57.8% with a more

cautious approach) can be attributed to the fact that each project and its requirements are unique. The data also

underscores the importance of careful consideration and weighing of factors such as stability, compatibility, and

innovation when jumping on a new Python version.

When do you think is the right

moment to jump on a new Python

release?

As soon as CI tests for the project start

passing with it

27.5%

After a year or longer 20.6%

When there is 1 newer version released 24.5%

14.7%After the first patch release

5.9%When there are 2 newer versions relesed

3.9%When the previous one reaches End of Life

3%Other

Streamlining developers’

workflow: the impact of

package management tools

The results of our survey reveal that poetry and pipenv are the most widely used package

dependency management tools, with 51% and 47.1% of respondents, respectively. The other

options—including conda, pip-tools, requirements.txt written by hand, setuptools, setup.py, and

virtualenvwrapper—lag significantly behind, without reaching more than 30% popularity.

Adhering to the industry standard of using package dependency management tools like poetry and pipenv is

crucial for software development as they enable developers to work more efficiently and effectively, while also

ensuring that their projects are built with the latest and greatest tools and technologies.

Poetry and pipenv offer streamlined solutions for managing packages that ensure compatibility and reduce the

risk of conflicts. They’re easy to use, flexible, and capable of handling even complex dependencies.

In contrast, the other options have limitations or lack the features required for modern software development

practices.

Which Python package dependency management tools do you prefer using?
(select max. 3 answers)

0

51%Poetry

47.1%Pipenv

8.8%Conda

26.5%Pip-tools

28.4%Requirements.txt written by hand

1%Setuptools

5.9%Setup.py

1%Virtualenvwrapper

10 20 40 50 6030

0197

Clean architecture

named the top choice

for greenfield

commercial projects

over microservices and

monolith

Architecture plays a critical role in software

development, particularly in the case of

greenfield commercial projects, as it sets the

foundation for the entire project. A good

architecture makes it easier to scale, maintain,

and modify the codebase as the project evolves.

The survey data shows that

 This option dominates the survey results

because it has proven to be the most effective solution

for managing complex software systems.

, with monolith in third (24.5%).

What’s interesting, the other options reflect a more ad

hoc and less systematic approach to architecture. In

some commercial projects, it may actually be wiser to

take into account the specific needs of a certain

project. However, our survey indicates that most

developers have a favorite “go-to” architecture for new

projects—though they don’t necessarily agree on

which one.

clean architecture is the

most popular recommendation for greenfield

commercial projects. It received 32.4% of the

responses.

Microservices took second place in the survey (29.4%

of responses)

Clean architecture 32.4%

Monolith 24.5%

Microservices 29.4%

10.8%
One that makes sense

for this particular project

2.9%I have no opinion

Clean architecture

32.4%
Microservices

29.4%
Monolith

24.5%

One that makes sense

for this particular project

10.8% 2.9%

I have no opinion

Which architecture do you recommend most for greenfield

commercial projects?

01

Jakub Kołaczkowski
Senior Python Developer

Expert commentary

Yogi Berra once said, “In theory, there’s no difference between

theory and practice, but in practice, there is.” I tend to agree, as

personal experience often shapes our preferences.

I could say, “Choose any item from the top three answers and you’re set” if you’re

unsure where to start, but a single screwdriver won’t solve all your problems. It’s

important you have a variety of tools at your disposal.

As software engineers, our value lies in working with code. In practice, however, to

maintain the quality of a project and ensure the continuous delivery of planned

functionality, we must also invest time in continuous refactoring. This is a common

theme among the top three architecture recommendations in the survey.

Adopting clean architecture, a set of guidelines that can enhance the traditional

layered architecture, is a great starting point. Consider it a secret ingredient for

both microservices and modular monolith approaches.

But don’t forget to continually evaluate and refine your work through refactoring.

By doing so, you’ll be able to unlock your full

potential as a software engineer and deliver

top-quality results.

98

0199

Type hints have become

a staple in Python

development

When it comes to newly started Python projects,

it’s clear that type hints have become an integral

part of Python development. With 79% of

respondents saying that they use Python type

hints in their projects, it’s evident that this

feature is widely adopted and valued by the

Python community. This trend is especially

interesting in the context of software

development as a whole, where type hints are

not always used.

Interestingly,

 This indicates that

even those who don’t use type hints all the time are still

aware of their benefits and find them useful in certain

situations.

only a small percentage of respondents

(2.9%) said they don’t use type hints in their projects,

while 19.6% use them sometimes.

Yes 77.5%

No 2.9%

Sometimes 19.6%

Yes

77.5%

Do you use Python type hints in newly started projects?

Sometimes

19.6%
No

2.9%

Which approach tops the

charts for implementing

business objects? Python

developers share their go-to

solutions
 

In the world of Python development, the implementation of business objects is a crucial aspect that

requires careful consideration. However, the results of our survey show that the majority of Python

developers have a clear preference: nearly 30% of respondents prefer to use the pydantic library,

while just under 28% prefer to use built-in dataclasses. Only a slightly smaller number of 26.5%

prefer to use regular Python classes.

For businesses looking to employ Python developers, it’s important to note that top experts should have a solid

understanding of the different options available for implementing business objects and have the ability to choose

the right approach based on project requirements, personal preferences, and the specific needs of the team.

This versatility and informed decision-making are key to delivering high-quality software.

Which library/approach do you

prefer to implement business

objects?

Pydantic 29.4%

Regular Python classes 26.5%

Built-in dataclasses 27.5%

7.8%
When I join a project,

I adopt the tools already in use

2.9%Attrs

2.9%Dicts

2.9%Other

Developers divided

on adopting AI coding

assistants

With advancements in technology, AI coding assistants are becoming increasingly popular among

software developers. However, the answers reveal that at the time of our survey, only 14% of

respondents were using an AI coding assistant, while 31.4% expressed interest in trying one out in

the future. The majority, 53.9%, didn’t use nor planned to use an AI coding assistant.

It’s possible that many developers are hesitant to use AI coding assistants because they prefer to rely on their

own expertise and experience. Additionally, there may be concerns about the accuracy and reliability of such

tools.

However, there are also advantages to using them, such as increased efficiency and productivity. So it’s highly

likely that when AI technology evolves and improves, more developers will adopt the use of AI coding assistants.

No, and I don’t plan to 53.9%

Yes 14.7%

I want to give it a try 31.4%

No, and I don’t plan to

*This question was asked before OpenAI introduced ChatGPT.

If we asked it now, the answers might have been different.

53.9%

Are you using an AI coding

assistant (e.g. GitHub Copilot,

Tabnine)?*

I want to give it a try

31.4%

Yes

14.7%

01

Maciej Urbański
Expert Python Developer

Expert commentary

It’s a running joke that programmers’ job is mostly copying stuff

from StackOverflow. And this is basically what these AI tools do,

with all the good and bad that comes with it, but in milliseconds

instead of minutes of searching, which adds up over time. The

questions to ask are, “How much of a developer’s work can AI do?”

and “Is it safe?”—not “Is it helpful?”

However, developers don’t give their trust easily. Github Copilot and similar tools

have been under fire for allegedly selling something that’s in public domain. The

argument is that since it was trained on open-source data, it should be open

source, as well. There’s also a question of whether sending code of the project

you’re currently working on to a cloud provider is okay with the project owner.

My gut feeling is that since coding is all about reducing time needed to deliver

features to market, using such tools won’t be “optional” in the future.

102

What’s

NEXT?

report 05

The future of Python

01104

CPython dominates as

the future’s top Python

implementation

When it comes to the future of Python, opinions

may vary, but the data speaks for itself. In our

survey, 69.6% of respondents believe that

CPython will be the best Python implementation

in the future, while 15.7% think it will be PyPy.

Even fewer (10.8%) feel it’s hard to tell or it will

strictly depend on the project (3.9%).

It’s clear that CPython has a strong following among

the Python community and is considered to be the

standard implementation of the language. With its

robust feature set and well-established ecosystem, it’s

no wonder that so many developers see it as the top

choice for future projects.

However, PyPy’s ability to offer faster performance for

certain use cases has also caught the attention of

some developers.

As the Python landscape continues to evolve, it will be

interesting to see how these trends develop and how

developers will choose the best Python implementation

for their projects in the future.

CPython 69.6%

It’s hard to tell 10.8%

PyPy 15.7%

3.9%It will strictly depend

on the project

CPython

69.6%

PyPy

15.7%

It’s hard to tell

10.8%

It will strictly depend

on the project

3.9%

Which Python implementation will be the best choice in the future?

AWS is the #1 cloud

platform for expert Python

developers

The cloud platform landscape has become an essential part of modern software development. It’s

revolutionizing the way businesses operate and deliver services to their customers as it provides

unprecedented access to computing power, storage, and services critical for businesses to succeed

in today’s digital economy.

Our survey results show that the top cloud platform of choice among Python developers is Amazon Web

Services (AWS) with an overwhelming 75.5% of votes. Google Cloud Platform comes in second with 10.8% of

the vote.

Having said that, with new technologies and innovations constantly emerging in the field, it remains to be seen

what the future holds for cloud computing and which platform will reign supreme.

Which cloud platform will be

the go-to choice?

AWS 75.5%

It’s hard to tell 5.9%

Google Cloud Platform 10.8%

1.9%Azure

4%
In most cases it will be

depend on the client

1.9%Dedicated server if it’s possible

01106

Python developers

predict Trello and Zoom

will fall out of favor

We asked developers about their thoughts on the

future of various synchronous or asynchronous

communication tools. Specifically, we asked

which of them are bound to become outdated

soon.

The most votes went to

Zoom was a close second, with 31.4% of votes. Other

tools like ClickUp (26.5%), Loom (25.5%), and email

(24.5%) also received a significant number of votes.

It’s important to note that tools like

. If a developer uses such solutions, it

means that they’re using the tools that are considered

the most effective, efficient, and up-to-date for

communication and collaboration within a project.

Trello, with 40.2% of

developers predicting it will soon become outdated.

Slack, Google

Meet, and Jira received relatively low votes,

suggesting that they’re still considered relevant and

valuable tools

Which synchronous/asynchronous communication tools

will soon be out of date?
(select max. 3 answers)

0

10

Email

24.5%

20

30

40

50

11.8%

Jira

40.2%

Trello

17.6%

Notion

25.5%

Loom

26.5%

ClickUp

31.4%

Zoom

5.9%

Google

Meet

2%

Slack

14.7%

Discord

01

Marek Bryling
Expert Software Engineer

Expert commentary

As developers, we like to be lazy. We opt for tools that we know,

that are proven to work, and that new team members can quickly

master.

Standardization is happening in many areas, including the methods and tools of

communication or in the cloud platforms we use. This standardization helps us

create cheaper and faster, reliable solutions. It allows us to focus on what is

important.

Less useful tools are being abandoned. Natural selection is under way. I just wish

that the practical solutions from the abandoned tools would be implemented in

the ones that dominate the market.

However, I would like to see new tools and platforms appear in this ecosystem

once in a while, to put pressure on the established ones. Otherwise, it will be

difficult to make progress.

The tools will get better and better. Our work more and more efficient.

But email communication will stay forever.

107

AI’s impact on software

development revealed

Our survey asked developers about their thoughts on the extent to which AI will automate different

aspects of the software development process, and the results were intriguing.

The top vote-getter is of developers

believing it will be automated by AI.

 of votes.

 also

received a lot of votes. However, a more complex task such as

 of developers predicting it will be automated by AI.

These results highlight the potential for AI to automate certain parts of the development process, but also the

limitations it currently faces.

“Generating docstring or documentation based on the code,” with 58.8%

“Automatically generating simple CRUDs based on a data model” isn’t far

behind, with 52.9%

Implementation of well-known algorithms (45.1%), validation of data (40.2%), and unit tests (33.3%)

generating filtering of data based on business

logic received relatively low votes, with only 13.7%

How much development (coding etc.) do you think will be automated through AI?

(select max. 3 answers)

0

33.3%Unit tests

40.2%Validation of data

45.1%
Implementations of well-known

algorithms

52.9%
Automatically generating simple

CRUDs based on DataModel

13.7%

Generating filtering of data based

on provided business logic (IF

statements with ANDs or ORs)

58.8%
Generating docstring or

documentation based on the code

10 20 40 50 6030

Future discussions about

Python will likely focus

on AI, performance, and GIL

removal—but there’s also

lots of uncertainty
 

Predicting the future is tricky, especially when it comes to determining the next hot topic in the world

of Python. A substantial 36.3% of our survey respondents confessed to feeling curious about the

next big thing in Python but uncertain about what that thing might be.

However, despite the uncertainty, a few potential hot topics emerged from the responses.

 will

be the next big thing in Python. Another Of the

remaining respondents, 8.8% think that GIL removal will be the next big thing, while smaller percentages believe

that it will be PyScript (2.9%), typing (2.9%), security (2.9%), asyncio (2.0%), or FastAPI (2.0%).  

So, while the future of Python remains a mystery, one thing is for sure: the developers who use Python are eager

to see what’s next. Whether it’s AI and machine learning, performance improvements, or something entirely new,

the Python community is poised for exciting developments in the coming years.

Almost 1 in 5

developers (16.7%) believe that artificial intelligence, machine learning, data engineering, and data science

14.7% of developers are betting the focus will be on performance.

What will be next Python-related

hot topic?

It’s difficult to say, but I’m curious 36.3%

Security 2.9%

Performance 14.7%

Asyncio 2%

ML/AI/DE/DS 16.7%

Typing 2.9%

10.8%Other

2%FastAPI

8.8%GIL removal

2.9%PyScript

Expert commentary

The Python ecosystem is constantly evolving, and the survey

results reveal a few exciting trends worth keeping an eye on.

Firstly, the interest in ML and AI is skyrocketing. Developers show a keen desire to

harness the power of artificial intelligence and new, easy-to-use libraries to train,

monitor and deploy machine learning models.

Developers are also looking for ways to make their code run faster, which is why

performance optimization is another hot topic.

Another area that’s starting to gain traction is the removal of GIL in Python, which

has long been a source of frustration for many developers. Removal of GIL can

lead to a significant boost in the performance of multi-threaded Python

applications.

Overall, the Python ecosystem is a hive of activity, and it’s a perfect time to be a

part of it. With many exciting developments on the horizon, the future of Python

looks bright.

110 01

Krzysztof Sopyła
Head of Machine Learning

and Data Engineering

01111

Nearly a third

of Pythonistas expect

performance improvements

in the future

Everybody knows that “prediction is difficult,

especially when it comes to the future.” Is it the

same for the evolution of programming

languages, particularly Python? The results of

our survey suggest that it might be. The second

most common response (26.5%) to the question

of what changes are expected in Python and its

ecosystem was, “It’s difficult to say, but I’m

curious.” This answer is not surprising in such a

rapidly developing industry like software.

That being said,

Type annotations received a nod of support from 9.8%

of those surveyed, while ML/AI tools and

functionalities, GIL removal, and real multithreading

were each noted by around 5–6% of participants.

But the future of Python isn’t just about technical

advancements—there are also expectations for the

ecosystem to grow and become more accessible to

developers. 4% of our respondents see further

popularity growth, while others believe that

architecture and design patterns will become more

popular (3.9%) or that the language will better support

these patterns (2.9%).
 
 

 most of our programmers (33%)

expect that future Python development will focus on

performance improvements.

(select max. 3 answers)

What do you expect to change in the area of Python in the future?

403020100

9.8%
Better support for type

annotations

4.9%Real multithreading

3.9%Further popularity growth

5.9%
More ML/AI tools

and functionalities

3.9%
Popularization of architecture

and design patterns

32.4%Performance improvements

5.9%GIL removal

2.9%

2.9%

2%

2%

More developer-friendly tools

and features

Better language support for using

design patterns

Stronger emphasis on security

Increased awareness of the Python

ecosystem and its specific use cases

3.9%More ecosystem growth

26.5%It’s difficult to say, but I’m curious

01

Mikołaj Lewandowski
Expert Python Developer

Expert commentary

Performance has always been considered a weakness rather than

a strength of Python. Despite this, the language and its ecosystem

have evolved in ways that allow us to overcome the limitations of

its interpreted nature.

For example, the use of C extensions, which is common in resource-intensive

libraries, provides both performance and ease of use. However, these solutions don’t

work for every case. The volumes of data being handled by systems today are higher

than ever, and the world is starting to recognize the cost of running hundreds of

servers for both businesses and the environment. In this context, performance is

increasingly important. Fortunately, both the direction of Python’s development and

the results of our survey results suggest that our community is aware of this.
 

The speed-up in Python 3.11 is particularly noteworthy. Compared to its predecessor,

the newest version is up to 60% faster, with an average improvement of 25%. These

past changes indicate that this is just the next step in Python’s journey toward

improvement. We now have a powerful yet flexible system for type annotations that

has already bridged the gap between Python and statically typed languages. It’s also

important that library and community adoption are keeping pace with this evolution.

Providing type hints is becoming standard practice in both commercial projects and

open-source libraries.
 

It’s difficult to predict how any technology will change in the coming years.

Nonetheless, I’m sure that future changes in Python will exceed our expectations.

112

01

Ronald Binkofski
CEO

Expert commentary

The current global tech landscape paints a very clear picture:

Python has established itself as a critical language for businesses

and organizations of all sizes, from startups to enterprises.

The demand for Python development skills is constantly growing, driven by the

increasing importance of data science, machine learning, and artificial intelligence.

Businesses are now recognizing the power of these technologies, and are

investing in teams and resources to develop their capabilities. What’s more, the

ease of use and versatility of Python make it an ideal choice for these complex,

data-intensive projects.

Overall, I’m confident that Python will remain a dominant player in the global

business landscape, and that its importance will only continue to grow.

Businesses that invest in Python and build their development capabilities

will be well-positioned for success in the years to come.
 
 

113

About STX Next

Launched in 2005, STX Next has grown into Europe’s leading

software development consulting company specializing in

Python. 

With a passion for delivering the best results, we’re

dedicated to helping our clients achieve their goals by

providing innovative technology and exceptional service. We

work with businesses and enterprises on custom-made, top-

quality digital products, supporting them every step of the

way. 

STX Next boasts a team of 400+ developers with extensive

experience in

We use this expertise to create bespoke solutions that meet

our clients’ unique needs. Whether it’s a web application, a

mobile app, or a data processing system—we have the skills

to deliver. 

Our developers are supported by a network of

Due to the company’s dynamic expansion in the last 12

months, including opening a branch office in Mérida, Mexico

in 2022, we now have an active presence in South America,

North America, and Europe—particularly the US, the UK, and

the DACH region. 

To partner up with STX Next on your next project, visit

 or reach out to us at !
 

Python, JavaScript, .NET, and React Native.

Scrum

Masters, Product Owners, DevOps Engineers, Machine

Learning and Data Engineering Specialists, Service Delivery

Managers, and Product Designers. 

stxnext.com business@stxnext.com

550+
professionals

on board

300+
clients

served

18+
years

of market

experience

200+
Python

developers

3.5+
years’

average

partnership

6.5
years’

average

experience

of our

Python

developers

400+
developers

200+
projects

http://stxnext.com
mailto:business@stxnext.com

