
Discover the many benefits of Python

and learn when it’s the right choice

for your tech stack.

Introduction

to Python for Tech
Managers

Table of Contents

Introduction 1

Why Python? 3

Python Web Frameworks 10

Python Libraries 29

Final Thoughts 37

Introduction

When you’re looking to build something, you want to make sure you have the right tools.
In many cases, the choice of tools will determine your entire experience.

Choose the wrong tools, and you’ll pay the price down the line; your work may be slower,
your competition may outpace you, or your end result may fall below expectations.

But choose the right tools, and you’ll be thankful for it every step of the way.

If what you’re building is software, your programming language is your prime tool.

The choice of language at the start of your development will have a profound impact on it
in the future. It may very well mean the difference between smooth scaling and costly
refactoring, or meeting your deadline and missing it.

Do you want your software development to be successful?

Choose Python.

The main objective of this ebook is to explain why you should do that—especially if you’re
looking to manage software development projects. Read on, and you’re also going to learn
everything you need to get started on Python web frameworks and Python libraries.

Ready? Let’s get to it.

stxnext.com 1

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Why Python?

Python is popular and widely supported

Python is quickly ascending to the forefront of the most popular programming languages
in the world. StackOverflow very clearly shows the incredible growth of Python:

Graph source

stxnext.com 2

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Coding Dojo also identifies Python as one of the most in-demand programming languages
of 2018.

The demand for Python is growing with no signs of stopping, second only to Java, whereas
the number of Java job postings is projected to decrease. It is likely that Python will
overtake Java in the coming years, reaching the #1 spot.

Graph source

stxnext.com 3

http://www.codingdojo.com/blog/7-most-in-demand-programming-languages-of-2018/
http://www.codingdojo.com/blog/7-most-in-demand-programming-languages-of-2018/
http://www.codingdojo.com/blog/7-most-in-demand-programming-languages-of-2018/
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

How can you benefit from Python’s popularity?

The popular option isn’t always the best one. But when it comes to programming
languages, popularity does pay off.

By using a popular language, you have a much higher chance of finding a solution to any
problem you may encounter. In fact, if your issue is common enough, Python probably has
a ready-made solution waiting for you already.

Python enjoys a healthy community of enthusiasts that strives to make the language
better every day, by fixing bugs and opening new possibilities.

At the same time, Python has some strong corporate sponsors who will push the adoption
of this language even further—Google is one of them. Because Google uses Python, they
are actively working on guides, tutorials, and other resources to get the most out of it.

In fact, Guido van Rossum, the creator of Python, is currently employed at Google and
devotes half of his time to developing our favorite programming language.

Writing Python code is easy, speeding up your development

Python is accessible by design, making it one of the fastest languages in terms of
development speed. Just look at what Guido van Rossum had to say at the conception of
the language:

“The second stream of material that is going to come out of this project is a programming
environment and a set of programming tools where we really want to focus again on the needs

of the newbie. This environment is going to have to be extremely user-friendly.”
Guido van Rossum, Former Benevolent Dictator for Life of the Python Language

(How cool is that title, by the way?)

A user-friendly environment in the hands of your development team means less time
wrestling with your building tool and more time spent on the actual building.

In fact, Python’s simplicity was the reason STX Next came to be in the first place. As we’ve
mentioned in the Introduction to this ebook already, before our CEO Maciej Dziergwa
started the company, he was a Java developer. Once he realized that he could recreate a
2-month Java project in mere 2 weeks using Python, there was no going back.

Get a headstart with frameworks and libraries

stxnext.com 4

https://www.kdnuggets.com/2017/07/6-reasons-python-suddenly-super-popular.html
http://izquotes.com/quote/158677
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Python is known for its rich selection of libraries, saving you the hassle of coding some
features by hand and accelerating time-to-market. If you’re looking for scientific libraries,
there’s Pandas, NumPy, and SciPy, for example. Python even has specialized libraries for
machine learning (scikit-learn) and natural language processing (nltk)—but more on that
later in the ebook.

Aside from libraries, Python also offers a wide range of web development frameworks you
can use to jump-start your project and avoid unnecessary coding. Some frameworks, such
as Django, give you everything you need to build a web application, from low- to high-end.
Other frameworks are more specialized, such as the Flask microframework. The next
section of this ebook gives you an extensive overview of this.

Whether you decide to use just a few libraries or entire frameworks, Python will help you
get results faster.

What about performance?

The way Python is structured and Python code executes is not without its drawbacks. One
oft-cited disadvantage of Python is its runtime, which is often slower compared to other
languages.

And yet, Python is still the language of choice for tech giants like Google. Why?

Because CPU time is rarely the limiting factor.

The limiting factor is your employees’ time.

You want to optimize your most expensive resources—and developer hours don’t come
cheap. Therefore, you need all the help you can get to shorten time-to-market, even if it
leads to slower runtime execution.

Mix it up with Cython

But that’s not all! For situations where performance really matters, Python offers tried
and tested solutions to incorporate other, faster languages into the code.

One such solution is using Cython. Usually, your performance bottleneck lies in only one
of the methods in your code. You can use Cython to rewrite the method in C, optimizing
your speed without the need to rewrite the whole code base.

“Using Cython you get the perfect mix of optimizing only at the bottleneck,
and the beauty of Python everywhere else.”

stxnext.com 5

https://static.googleusercontent.com/media/research.google.com/en//archive/sawzall-sciprog.pdf
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Nick Humrich at Hacker Noon

And so, once again, whatever your woes—Python has got you covered.

Reading Python code is intuitive, making maintenance a breeze

Python’s syntax is clear and concise. The language is designed to be readable and close to
actual English, making it easy to decipher. Python also requires fewer lines of code to
achieve results compared to languages such as C or Java.

Python’s approach is so deeply embedded that you can even learn about it from Python
itself. Here’s what you’ll see when you execute import this in the Python interpreter:

>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—let’s do more of those!

(We learned this little trick from this article over at Full Stack Python.)

How do you benefit from readable code?

stxnext.com 6

https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1
https://www.fullstackpython.com/why-use-python.html
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

The simplicity of Python helps greatly when you have to read the code you’ve written, or
code from another developer. Code review goes much faster when you have fewer lines of
code to actually review, and the code reads like English. There’s also less catching up
involved when the code changes hands; you can figure out pretty quickly what each
function is supposed to do.

With code that’s easier to understand and navigate, you can reduce the amount of work
needed to maintain and expand your code base. And reducing work is one of the best
things you can do, since we’ve already established that optimizing developer productivity
should be your priority.

Python gives you tried and tested scalability

No one can really predict when your user numbers will start surging and scalability will
become a priority. Which is why it’s a good idea to use a language that scales great and, as
we’ve mentioned above, is easy to maintain.

Some of the most ambitious projects around the web—YouTube, Reddit, EVE Online—all
use Python to serve their user base reliably.

To be precise, Reddit was initially written in Lisp, and then rewritten in Python—over a
single weekend.

Here’s how the switch from Lisp to Python was justified on the Reddit blog:

“We were already familiar with Python.
It’s fast, development in Python is fast, and the code is clear.”

/u/shuffman56 on choosing Python for Reddit

In short: if you dream big, go with Python.

stxnext.com 7

https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1
https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1
https://redditblog.com/2005/12/05/on-lisp/
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Python Web Frameworks

If you’ve read this far, it’s safe to assume you’re interested in taking up Python—or maybe
you’ve already started learning this awesome language.

It doesn’t seem too daunting, right? You can code, after all, so it’s just a matter of grasping
the differences in syntax. Perhaps you’re already watching tutorials and reading guides.

So let’s take it up a notch and talk about collecting proper experience in Python.

Let’s discuss creating your first Python project.

Where do you start?

With an idea, obviously, but that won’t be a problem. Surely you already have several great
concepts safely locked away in the vault of your mind, just waiting for some of that
precious spare time and attention.

What’s next, then? The choice of a framework.

And that’s where the real conundrum starts, because the ecosystem of Python
frameworks is quite extensive and varied.

In this section of the ebook, we’re going to describe the best and most popular Python
frameworks. It should be more than enough for you to pick the right one and get started.

Be warned, though, that this list is rather subjective. It came together mainly as a result of
our collective experience of using the following frameworks in commercial projects.

stxnext.com 8

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

What are web frameworks?

Before you decide on a particular framework, let’s make sure we’re on the same page
when it comes to definitions.

What exactly do we have in mind when we talk about a web application framework?

In short, a web framework is a package of generic functionalities that makes creating
web apps easier for the developer. It serves as a shortcut that removes the need to write
unnecessary code by reusing existing solutions. As a result, it reduces the time your
developers need to spend on writing code and makes their work more effective.

Web frameworks can be divided into two categories: frontend and backend. The former,
also known as CSS frameworks, is all about the parts of the web app the users see and
interact with. The latter relates to the behind-the-scenes aspects of creating a web app.

The crucial benefit of using Python frameworks is that you can mix and match frontend
and backend elements within each framework to achieve the desired result. You can either
focus on one or merge several of them, depending on the scope of your project.

By offering ready-made solutions, web app frameworks help developers add complex
and dynamic elements that would otherwise be very difficult or time-consuming to
develop from scratch.

12+ best Python web frameworks

1) Django

Django is one of the most popular Python frameworks. Offering all the tools you need to
build a web application within a single package, from low- to high-end, is its trademark.

stxnext.com 9

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Django applications are based on a design pattern similar to MVC, the so-called MVT
(Model-View-Template) pattern. Models are defined using the Django ORM, while SQL
databases are mainly used as storage.

Django has a built-in admin panel, allowing for easy management of the database content.
With minimal configuration, this panel is generated automatically based on the defined
models.

Views can include both functions and classes, and the assignment of URLs to views is done
in one location (the urls.py file), so that after reviewing that single file you can learn which
URLs are supported. Templates are created using a fairly simple Django Templates system.

Django is praised for strong community support and detailed documentation describing
the functionality of the framework. This documentation coupled with getting a
comprehensive environment after the installation makes the entry threshold rather low.
Once you go through the official tutorial, you’ll be able to do most of the things required to
build an application.

Unfortunately, Django’s monolithism also has its drawbacks. It is difficult, though not
impossible, to replace one of the built-in elements with another implementation. For
example, using some other ORM (like SQLAlchemy) requires abandoning or completely
rebuilding such items as the admin panel, authorization, session handling, or generating
forms.

Because Django is complete but inflexible, it is suitable for standard applications (i.e. the
vast majority of software projects). However, if you need to implement some
unconventional design, it leads to struggling with the framework, rather than pleasant
programming.

Sample model in Django

class Company(models.Model):

name = models.CharField(max_length=255)

email = models.EmailField(max_length=75, null=True, blank=True)

website_url = models.URLField(blank=True, null=True)

city = models.CharField(max_length=100, null=True, blank=True)

street = models.CharField(max_length=100, null=True, blank=True)

size = models.IntegerField(null=True, blank=True)

date_founded = models.CharField(

help_text='MM/YYYY', null=True, blank=True, max_length=7,

stxnext.com 10

https://docs.djangoproject.com/en/1.11/intro/tutorial01/
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

)

@property

def urls(self):

return {

'view': reverse('view-company', args=(self.pk,)),

'edit': reverse('edit-company', args=(self.pk,)),

}

def __unicode__(self):

return self.name

Flask

Flask is considered a microframework. It comes with basic functionality, while also
allowing for easy expansion. Therefore, Flask works more as the glue that allows you to
join libraries with each other.

For example, “pure Flask” does not provide support for any storage, yet there are many
different implementations that you can install and use interchangeably for that purpose
(such as Flask-SQLAlchemy, Flask-MongoAlchemy, and Flask-Redis). Similarly, the basic
template system is Jinja2, but you can use a replacement (like Mako).

The motto of this framework is “one drop at a time,” and this is reflected in its
comprehensive documentation. The knowledge of how to build an application is acquired
in portions here; after reading a few paragraphs, you will be able to perform basic tasks.

stxnext.com 11

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

You don’t have to know the more advanced stuff right away—you’ll learn it once you
actually need it. Thanks to this, students of Flask can gather knowledge smoothly and
avoid boredom, making Flask suitable for learning.

A large number of Flask extensions, unfortunately, are not supported as well as the
framework itself. It happens quite often that the plug-ins are no longer being developed
or their documentation is outdated. In cases like these, you need to spend some time
googling a replacement that offers similar functionality and is still actively supported.

When building your application with packages from different authors, you might have to
put quite a bit of sweat into integrating them with each other. You will rarely find
ready-made instructions on how to do this in the plug-ins’ documentation, but in such
situations the Flask community and websites such as Stack Overflow should be of help.

Sample view in Flask

@image_view.route(

'/api/<string:version>/products/<int:prod_id>/images',

methods=['GET'],

)

@auth_required()

@documented(prod_id="ID of a product")

@output(ProductImagesSeq)

@errors(MissingProduct)

@jsonify

def images_get(version, prod_id):

"""Retrieves a list of product images."""

return [i.serialize() for i in find_product(prod_id).images]

stxnext.com 12

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Pyramid

Pyramid, the third noteworthy Python web framework, is rooted in two other products
that are no longer developed: Pylons and repoze.bfg. The legacy left by its predecessors
caused Pyramid to evolve into a very mature and stable project.

The philosophies of Pyramid and Django differ substantially, even though both were
released in the same year (2005). Unlike Django, Pyramid is trivial to customize, allowing
you to create features in ways that the authors of the framework themselves hadn’t
foreseen. It does not force the programmer to use framework’s idioms; it’s meant to be a
solid scaffolding for complex or highly non-standard projects.

Pyramid strives to be persistence-agnostic. While there is no bundled database access
module, a common practice is to combine Pyramid with the powerful, mature
SQLAlchemy ORM. Of course, that’s only the most popular way to go. Programmers are
free to choose whatever practices suit them best, such as using the peewee ORM, writing
raw SQL queries, or integrating with a NoSQL database, just to name a few.

All options are open, though this approach requires a bit of experience to smoothly add
the desired persistence mechanisms to the project. The same goes for other components,
such as templating.

Openness and freedom are what Pyramid is all about. Modules bundled with it relate to
the web layer only and users are encouraged to freely pick third-party packages that will
support other aspects of their projects.

stxnext.com 13

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

However, this model causes a noticeable overhead at the beginning of any new project,
because you have to spend some time choosing and integrating the tools your team is
comfortable with. Still, once you put the effort into making additional decisions during the
early stages of the work, you are rewarded with a setup that makes it easy and
comfortable to start a new project and develop it further.

Pyramid is a self-proclaimed “start small, finish big, stay finished framework.” This makes it
an appropriate tool for experienced developers who are not afraid of playing the long
game and working extra hard in the beginning, without shipping a single feature within the
first few days. Less experienced programmers may feel a bit intimidated.

Sample “Hello world” app in Pyramid

from wsgiref.simple_server import make_server

from pyramid.config import Configurator

from pyramid.response import Response

def hello_world(request):

return Response('Hello, world!')

if __name__ == '__main__':

with Configurator() as config:

config.add_route('hello', '/')

config.add_view(hello_world, route_name='hello')

app = config.make_wsgi_app()

server = make_server('0.0.0.0', 6543, app)

server.serve_forever()

web2py

stxnext.com 14

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Created in 2007, web2py is a framework originally designed as a teaching tool for
students, so the main concern for its authors was ease of development and deployment.

Web2py is strongly inspired by Django and Ruby on Rails, sharing the idea of convention
over configuration. In other words, web2py provides many sensible defaults that allow
developers to get off the ground quickly.

This approach also means there are a lot of goodies bundled with web2py. You will find
everything you’d expect from a web framework in it, including a built-in server,
HTML-generating helpers, forms, validators, and many more—nothing unusual thus far,
one could argue. Support for multiple database engines is neat, though it’s a pretty
common asset among current web frameworks.

However, some other bundled features may surprise you, since they are not present in
other frameworks:

● helpers for creating JavaScript-enabled sites with jQuery and Ajax;
● scheduler and cron;
● 2-factor authentication helpers;
● text message sender;
● an event-ticketing system, allowing for automatic assignment of problems that

have occurred in the production environment to developers.

The framework proudly claims to be a full-stack solution, providing everything you could
ever need.

Web2py has extensive documentation available online. It guides newcomers step by step,
starting with a short introduction to the Python language. The introduction is seamlessly
linked with the rest of the manual, demonstrating different aspects of web2py in a friendly
manner, with lots of code snippets and screenshots.

stxnext.com 15

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Despite all its competitive advantages, web2py’s community is significantly smaller
than Django’s, or even Pyramid’s. Fewer developers using it means your chances of
getting help and support are lower. The official mailing list is mostly inactive.

Additionally—and unfortunately—web2py is not compatible with Python 3 at the
moment. This state of things puts the framework’s prospects into question, as support for
Python 2 ends in 2020. This issue is being addressed on the project’s github. Here is where
you can track the progress.

Sample model in web2py

class Ads(BaseModel):

tablename = "ads"

def set_properties(self):

T = self.db.T

self.fields = [

main

Field("title", "string"),

Field("description", "text"),

Field("picture", "upload"),

Field("thumbnail", "upload"),

Field("link", "string"),

Field("place", "string")

]

self.computations = {

"thumbnail": lambda r: THUMB2(r['picture'],

gae=self.db.request.env.web2py_runtime_gae)

}

self.validators = {

"title": IS_NOT_EMPTY(),

"description": IS_LENGTH(255, 10),

"picture": IS_IMAGE(),

"place": IS_IN_SET(["top_slider", "top_banner",

"bottom_banner", "left_sidebar", "right_sidebar", "inside_article",

"user_profile"], zero=None)

stxnext.com 16

https://github.com/web2py/web2py/issues/1353
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

}

Sanic

Sanic differs considerably from the aforementioned frameworks because unlike them, it
is based on asyncio—Python’s toolbox for asynchronous programming, bundled with the
standard library starting from version 3.4.

In order to develop projects based on Sanic, you have to grasp the ideas behind asyncio
first. This involves a lot of theoretical knowledge about coroutines, concurrent
programming caveats, and careful reasoning about the data flow in the application.

Once you get your head around Sanic/asyncio and applies the framework to an
appropriate problem, the effort pays off. Sanic is especially useful when it comes to
handling long-living connections, such as websockets. If your project requires support for
websockets or making a lot of long-lasting external API calls, Sanic is a great choice.

Another use case of Sanic is writing a “glue-web application” that can serve as a mediator
between two subsystems with incompatible APIs. Note that it requires at least Python
3.5, though.

The framework is meant to be very fast. One of its dependencies is uvloop—an alternative,
drop-in replacement for asyncio’s not-so-good built-in event loop. Uvloop is a wrapper
around libuv, the same engine that powers Node.js. According to the uvloop
documentation, this makes asyncio work 2–4 times faster.

stxnext.com 17

https://github.com/MagicStack/uvloop
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

In terms of “what’s in the box,” Sanic doesn’t offer as much as other frameworks. It is a
microframework, just like Flask. Apart from routing and other basic web-related goodies
like utilities for handling cookies and streaming responses, there’s not much inside. Sanic
imitates Flask, for instance by sharing the concept of Blueprints—tiny sub-applications
that allow developers to split and organize their code in bigger applications.

Sanic also won’t be a good choice for simple CRUD applications that only perform basic
database operations. It would just make them more complicated with no visible benefit.

Handling websockets in Sanic

@app.websocket('/websocket')

async def time(websocket, path):

while True:

now = datetime.datetime.utcnow().isoformat() + 'Z'

await websocket.send(now)

await asyncio.sleep(random.random() * 3)

Japronto

Have you ever imagined handling 1,000,000 requests per second with Python?

It seems unreal, since Python isn’t the fastest programming language out there. But when
a brilliant move was made to add asyncio to the standard library, it opened up countless
possibilities.

Japronto is a microframework that leverages some of them. As a result, this Python
framework was able to cross the magical barrier of 1 million requests handled per
second.

You may still be at a loss as to how that is possible, exactly.

It all comes down to two aces up Japronto’s sleeve: uvloop and PicoHTTPParser. Uvloop is
an asyncio backend based on libuv, while PicoHTTPParser is a lightweight HTTP headers
parser written in C. All core components of the framework are also implemented in C. A
wide variety of low-level optimizations and tricks are used to tweak performance.

Japronto is designed for special tasks that could not be accomplished with bloated
mainstream frameworks. It is a perfect fit for problems where every nanosecond counts.

stxnext.com 18

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Knowledgeable developers, obsessed with optimization, will reap all of its possible
benefits.

Additionally, Japronto is meant to provide a solid foundation for microservices using REST
APIs with minimal overhead. In other words, there’s not much in the box. Developers only
need to set up routing and decide which routes should use synchronous or asynchronous
handlers.

It might seem counterintuitive, but if a request can be handled in a synchronous way, you
shouldn’t try to do it asynchronously, as the overhead of switching between coroutines
will limit performance.

What is quite unfortunate is that Japronto is not being actively developed. On the other
hand, the project is licensed under MIT, and the author claims he is willing to accept any
contributions. Like Sanic, the framework is meant to work with Python 3.5+ versions.

Sample “Hello world” app in Japronto

from japronto import Application

def hello(request):

return request.Response(text='Hello world!')

app = Application()

app.router.add_route('/', hello)

app.run(debug=True)

stxnext.com 19

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

aiohttp

Aiohttp is another library based on asyncio, the modern Python toolkit for writing
asynchronous code. Not meant to be a framework in a strict sense, aiohttp is more of a
toolbox, supplementing the async arsenal with everything related to HTTP.

This means aiohttp is helpful not only for writing server applications, but also to clients.
Both will benefit from asyncio’s goodies, most of all the ability to handle thousands of
connections at the same time, provided the majority of operations involves I/O calls.

Such powerful clients are great when you have to issue many API calls at once, for
example for scraping web pages. Without asyncio, you would have to use threading or
multiprocessing, which are harder to get right and require much more memory.

Apart from building standalone applications, aiohttp’s clients are a great supplement to
any asyncio-based application that needs to issue non-blocking HTTP calls. The same is
true for websockets. Since they are part of the HTTP specification, you can connect to
websocket servers and easily exchange messages with them.

When it comes to servers, aiohttp gives you everything you can expect from a
microframework. The features available out-of-the-box include routing, middleware, and
signals. It may seem like it’s very little, but it will suffice for a web server.

“What about the remaining functionalities?” you may ask.

stxnext.com 20

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

As far as those are concerned, you can build the rest of the functionalities using one or
many asyncio-compatible libraries. You will find plenty of them using sources like this one.

Aiohttp is built with testing in mind. Developers who want to test an aiohttp-based
application will find it extremely easy, especially with the aid of pytest.

Even though aiohttp offers satisfactory performance by default, there are a few
low-hanging fruits you can pick. For example, you can install additional libraries: cchardet
and aiodns. Aiohttp will detect them automatically. You can also utilize the same uvloop
that powers Sanic.

Last but not least: one definite advantage of aiohttp is that it is being actively
maintained and developed. Choosing aiohttp when you build your next application will
certainly be a good call.

Websocket client using aiohttp

async with session.ws_connect('http://example.org/ws') as ws:

async for msg in ws:

if msg.type == aiohttp.WSMsgType.TEXT:

if msg.data == 'close cmd':

await ws.close()

break

else:

await ws.send_str(msg.data + '/answer')

elif msg.type == aiohttp.WSMsgType.ERROR:

break

stxnext.com 21

https://github.com/timofurrer/awesome-asyncio
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Twisted

With Twisted, Python developers were able to do async programming long before it was
cool. Twisted is one of the oldest and most mature Python projects around.

Originally released in 2002, Twisted predates even PEP8, so the code of the project does
not follow the famous code style guide recommendations. Admittedly, this may somewhat
discourage people from using it these days.

Twisted’s heart is an event-driven networking engine called reactor. It is used for
scheduling and calling user-defined callbacks.

In the beginning, developers had to use explicit callbacks by defining functions and passing
them around separately for cases when an operation succeeded and when it failed.

Although this technique was compelling, it could also lead to what we know from early
JavaScript: callback hell. In other words, the resultant code was tough to read and analyze.

At some point, Twisted introduced inlineCallbacks—the notation for writing
asynchronous code that was as simple to read as regular, synchronous code. This
solution played very well with Python’s syntax and greatly influenced modern async
toolkit from the standard library, asyncio.

The greatest advantage of this framework is that although Twisted itself is just an engine
with few bundled extensions, there are many additional extensions available to expand its
functionality. They allow for both low-level network programming (TCP/USP) and high,
application-level work (HTTP, IMAP, SHH, etc).

stxnext.com 22

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

This makes Twisted a perfect choice for writing specialized services; however, it is not a
good candidate for regular web applications. Developers would have to write a lot of
things on their own to get the functionality they take for granted with Django.

Twisted is being actively maintained. There is an undergoing effort to migrate all of its
code to be compatible with Python 3. The core functionality was rewritten some time ago,
but many third-party modules are still incompatible with newer versions of the
interpreter.

This may raise some concerns whether Twisted is the best choice for new projects. On the
other hand, though, it is more mature than some asyncio-based solutions. Also, Twisted
has been around for quite some time now, which means it will undoubtedly be maintained
at least for a good while.

inlineCallbacks code in Twisted

@inlineCallbacks

def getUsers(self):

try:

responseBody = yield makeRequest("GET", "/users")

except ConnectionError:

log.failure("makeRequest failed due to connection error")

returnValue([])

returnValue(json.loads(responseBody))

stxnext.com 23

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Falcon

Falcon is another microframework on our list. The goal of the Falcon project is to create a
minimalist foundation for building web apps where the slightest overhead matters.

Authors of the framework claim it is a bare-metal, bloat-free toolkit for building very fast
backend code and microservices. Plus, it is compatible with both Python 2 and 3.

A big advantage of Falcon is that it is indeed very fast. Benchmarks published on its
website show an incredible advantage over mainstream solutions like Django or Flask.

The downside, though, is that Falcon offers very little to start with. There’s routing,
middlewares, hooks—and that’s basically everything. There are no extras: no validation, no
authentication, etc. It is up to the developer to extend functionality as needed.

Falcon assumes it will be used for building REST APIs that talk JSON. If that is the case,
you really need literally zero configuration. You can just sit down and code.

This microframework might be an exciting proposition for implementing
highly-customized services that demand the highest performance possible. Falcon is an
excellent choice when you don’t want or can’t invest in asyncio-based solutions.

If you’re thinking, “Sometimes the simplest solution is the best one,” you should definitely
consider Falcon.

stxnext.com 24

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Sample “Hello world” app in Falcon

import falcon

class QuoteResource:

def on_get(self, req, resp):

quote = {

'quote': (

"I've always been more interested in "

"the future than in the past."

),

'author': 'Grace Hopper'

}

resp.media = quote

api = falcon.API()

api.add_route('/quote', QuoteResource())

API Star

API Star is the new kid on the block. It is yet another microframework, but this one is
compatible with Python 3 only. Which is not surprising, because it leverages type hints
introduced in Python 3.5.

API Star uses type hints as a notation for building validation schemata in a concise,
declarative way. Such a schema (called a “Type” in the framework’s terminology) can then
be bound to request a handling function.

stxnext.com 25

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Additionally, API Star features automatically generated API docs. They are compatible
with OpenAPI 3. Such docs can facilitate communication between API authors and its
consumers, i.e. frontend developers. If you use the Types we’ve mentioned, they are
included in the API docs.

Another outstanding feature is the dependency injection mechanism. It appears to be an
alternative to middlewares, but smarter and much more powerful.

For example, you can write a so-called Component that will provide our views with a
currently authenticated User. On the view level, you have to explicitly state that it will
require a User instance.

The rest happens behind the scenes. API Star resolves which Components have to be
executed to finally run our view with all the required information.

The advantage that automatic dependency injection has over regular middlewares is that
Components do not cause any overhead for the views where they are not used.

Last but not least, API Star can also be run atop asyncio in a more traditional, synchronous,
WSGI-compliant way. This makes it probably the only popular framework in the Python
world capable of doing that.

The rest of the goodies bundled with API Star are pretty standard: optional support for
templating with jinja2, routing, and event hooks.

All in all, API Star looks extremely promising. At the time of writing, it has over 4,500 stars
in its GitHub repository. The repository already has a few dozen contributors, and pull
requests are merged daily. Many of us at STX Next are keeping our fingers crossed for this
project!

Schema validation on views in API Star

from apistar import types, validators

class Product(types.Type):

name = validators.String(max_length=100)

rating = validators.Integer(minimum=1, maximum=5)

in_stock = validators.Boolean(default=False)

size = validators.String(enum=['small', 'medium', 'large'])

stxnext.com 26

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

def create_product(product: Product):

Save a new product record in the database.

...

routes = [

Route('/create_product/', method='POST', handler=create_product)

]

Others

There are many more Python web frameworks out there you might find interesting and
useful. Each of them focuses on a different issue, was built for distinct tasks, or has a
particular history.

The first that comes to mind is Zope2, one of the oldest frameworks, still used mainly as
part of the Plone CMS. Zope3 (later renamed BlueBream) was created as Zope2’s
successor. The framework was supposed to allow for easier creation of large applications,
but hasn’t won too much popularity, mainly because of the need to master fairly complex
concepts (e.g. Zope Component Architecture) very early in the learning process.

Also noteworthy is the Google App Engine, which allows you to run applications written in
Python, among others. This platform lets you create applications in any framework
compatible with WSGI. The SDK for the App Engine includes a simple framework called
webapp2, and this exact approach is often used in web applications adapted to this
environment.

Another interesting example is Tornado, developed by FriendFeed and made available by
Facebook. This framework includes libraries supporting asynchronicity, so you can build
applications that support multiple simultaneous connections (like long polling or
WebSocket).

Other libraries similar to Tornado include Pulsar (async) and Gevent (greenlet). These
libraries allow you to build any network applications (multiplayer games and chat rooms,
for example). They also perform well at handling HTTP requests.

Developing applications using these frameworks and libraries is more difficult and
requires you to explore some harder-to-grasp concepts. We recommend getting to them
later on, as you venture deeper into the wonderful world of Python.

stxnext.com 27

https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Python Libraries

Python is many things.

Cross-platform. General-purpose. High-level.

As such, the programming language has numerous applications and has been widely
adopted by all sorts of communities, from data science to business. These communities
value Python for its precise and efficient syntax, relatively flat learning curve, and good
integration with other languages (e.g. C/C++).

The language’s popularity has resulted in a plethora of Python packages being produced
for data visualization, machine learning, natural language processing, complex data
analysis, and more.

Here is our list of the most popular Python libraries:

Astropy

Astropy is a collection of packages designed for use in astronomy.

The core Astropy package contains functionality aimed at professional astronomers and
astrophysicists, but may be useful to anyone developing software for astronomy.

Biopython

Biopython is a collection of non-commercial Python tools for computational biology and
bioinformatics.

It contains classes to represent biological sequences and sequence annotations. The
library can also read and write to a variety of file formats.

stxnext.com 28

http://www.astropy.org
http://www.astropy.org/
http://biopython.org
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Bokeh

Bokeh is a Python interactive visualization library that targets modern web browsers for
presentation.

It can help anyone who wishes to quickly and easily create interactive plots, dashboards,
and data applications.

The purpose of Bokeh is to provide elegant, concise construction of novel graphics in the
style of D3.js, but also deliver this capability with high-performance interactivity over very
large or streaming datasets.

Cubes

Cubes is a light-weight Python framework and set of tools for the development of
reporting and analytical applications, Online Analytical Processing (OLAP),
multidimensional analysis, and browsing of aggregated data.

Dask

Dask is a flexible parallel computing library for analytic computing, composed of two
components:

1) dynamic task scheduling optimized for computation and interactive computational
workloads;

2) Big Data collections like parallel arrays, dataframes, and lists that extend common
interfaces such as NumPy, Pandas, or Python iterators to larger-than-memory or
distributed environments.

DEAP

DEAP is an evolutionary computation framework for rapid prototyping and testing of
ideas.

It incorporates the data structures and tools required to implement the most common
evolutionary computation techniques, such as genetic algorithms, genetic programming,
evolution strategies, particle swarm optimization, differential evolution, and estimation of
distribution algorithms.

stxnext.com 29

http://bokeh.pydata.org
http://cubes.databrewery.org
http://dask.pydata.org/en/latest/
https://github.com/deap
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

DMelt

DataMelt, or DMelt, is a software for numeric computation, statistics, analysis of large
data volumes (Big Data), and scientific visualization.

It can be used with several scripting languages, including Python/Jython, BeanShell,
Groovy, Ruby, and Java.

The library has numerous applications, such as natural sciences, engineering, modeling,
and analysis of financial markets.

graph-tool

Graph-tool is a module for the manipulation and statistical analysis of graphs.

matplotlib

Matplotlib is a Python 2D plotting library that produces publication-quality figures in a
variety of hard-copy formats and interactive cross-platform environments.

It allows you to generate plots, histograms, power spectra, bar charts, error charts, scatter
plots, and more.

Mlpy

Mlpy is a machine learning library built on top of NumPy/SciPy, the GNU Scientific
Libraries.

It provides a wide range of machine learning methods for supervised and unsupervised
problems, and is aimed at finding a reasonable compromise between modularity,
maintainability, reproducibility, usability, and efficiency.

NetworkX

NetworkX is a library for studying graphs which helps you create, manipulate, and study
the structure, dynamics, and functions of complex networks.

Nilearn

Nilearn is a Python module for fast and easy statistical learning on neuroimaging data.

stxnext.com 30

http://jwork.org/dmelt/
http://graph-tool.skewed.de
https://github.com/matplotlib/matplotlib
http://mlpy.sourceforge.net
http://networkx.github.io
http://nilearn.github.io/
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

This library makes it easy to use many advanced machine learning, pattern recognition,
and multivariate statistical techniques on neuroimaging data for applications such as
MVPA (Multi-Voxel Pattern Analysis), decoding, predictive modelling, functional
connectivity, brain parcellations, or connectomes.

NumPy

NumPy is the fundamental package for scientific computing with Python, adding support
for large, multidimensional arrays and matrices, along with a large library of high-level
mathematical functions to operate on these arrays.

Pandas

Pandas is a library for data manipulation and analysis, providing data structures and
operations for manipulating numerical tables and time series.

Pipenv

Pipenv is a tool designed to bring the best of all packaging worlds to the Python world.

It automatically creates and manages a virtualenv for your projects, along with adding or
removing packages from your Pipfile as you install or uninstall packages.

Pipenv is primarily meant to provide users and developers of applications with an easy
method to set up a working environment.

PsychoPy

PsychoPy is a package for the generation of experiments for neuroscience and
experimental psychology.

It is designed to allow the presentation of stimuli and collection of data for a wide range of
neuroscience, psychology, and psychophysical experiments.

PySpark

PySpark is the Python API for Apache Spark.

Spark is a distributed computing framework for big data processing. It serves as a unified
analytics engine, built with speed, ease of use, and generality in mind.

stxnext.com 31

http://www.numpy.org
http://pandas.pydata.org
https://github.com/pypa/pipenv
http://www.psychopy.org
http://spark.apache.org/docs/2.1.0/api/python/pyspark.html
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Spark offers modules for streaming, machine learning, and graph processing. It’s also
completely open-source.

python-weka-wrapper

Weka is a suite of machine learning software written in Java, developed at the University
of Waikato, New Zealand.

It contains a collection of visualization tools and algorithms for data analysis and
predictive modeling, together with graphical user interfaces for easy access to these
functions.

The python-weka-wrapper package makes it easy to run Weka algorithms and filters from
within Python.

PyTorch

PyTorch is a deep learning framework for fast, flexible experimentation.

This package provides two high-level features: Tensor computation with strong GPU
acceleration and deep neural networks built on a tape-based autodiff system.

It can be used either as a replacement for numpy to use the power of GPUs, or a deep
learning research platform that provides maximum flexibility and speed.

SQLAlchemy

SQLAlchemy is an open-source SQL toolkit and Object-Relational Mapper that gives
application developers the full power and flexibility of SQL.

It provides a full suite of well-known enterprise-level persistence patterns, designed for
efficient and high-performing database access, adapted into a simple and Pythonic domain
language.

The main goal of the library is to change the way we approach databases and SQL.

SageMath

SageMath is a mathematical software system with features covering multiple aspects of
mathematics, including algebra, combinatorics, numerical mathematics, number theory,
and calculus.

stxnext.com 32

https://pypi.python.org/pypi/python-weka-wrapper
https://pytorch.org
http://www.sqlalchemy.org
http://www.sagemath.org
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

It uses Python to support procedural, functional, and object-oriented constructs.

ScientificPython

ScientificPython is a collection of modules for scientific computing.

It contains support for geometry, mathematical functions, statistics, physical units, IO,
visualization, and parallelization.

scikit-image

Scikit-image is an image processing library.

It includes algorithms for segmentation, geometric transformations, color space
manipulation, analysis, filtering, morphology, feature detection, and more.

scikit-learn

Scikit-learn is a machine learning library.

It features various classification, regression, and clustering algorithms, including support
vector machines, random forests, gradient boosting, k-means, and DBSCAN.

The library is designed to interoperate with the Python numerical and scientific libraries
NumPy and SciPy.

SciPy

SciPy is a library used by scientists, analysts, and engineers doing scientific computing and
technical computing.

It contains modules for optimization, linear algebra, integration, interpolation, special
functions, FFT, signal and image processing, ODE solvers, and other tasks common in
science and engineering.

SCOOP

SCOOP is a Python module for distributing concurrent parallel tasks on various
environments, from heterogeneous grids of workstations to supercomputers.

stxnext.com 33

http://dirac.cnrs-orleans.fr/plone/software/scientificpython
http://scikit-image.org
http://scikit-learn.org/stable
http://www.scipy.org
http://scoop.readthedocs.org
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

SunPy

SunPy is a data-analysis environment specializing in providing the software necessary to
analyze solar and heliospheric data in Python.

SymPy

SymPy is a library for symbolic computation, offering features ranging from basic symbolic
arithmetic to calculus, algebra, discrete mathematics, and quantum physics.

It provides computer algebra capabilities either as a standalone application, a library to
other applications, or live on the web.

TensorFlow

TensorFlow is an open-source software library for machine learning across a range of
tasks, developed by Google to meet their needs for systems capable of building and
training neural networks to detect and decipher patterns and correlations, analogous to
the learning and reasoning employed by humans.

It is currently used for both research and production at Google products, often replacing
the role of its closed-source predecessor, DistBelief.

Theano

Theano is a numerical computation Python library, allowing you to define, optimize, and
evaluate mathematical expressions involving multidimensional arrays efficiently.

TomoPy

TomoPy is an open-source Python toolbox for performing tomographic data processing
and image reconstruction tasks.

It offers a collaborative framework for the analysis of synchrotron tomographic data, with
the goal to unify the efforts of different facilities and beamlines performing similar tasks.

Veusz

Veusz is a scientific plotting and graphing package designed to produce
publication-quality plots in popular vector formats, including PDF, PostScript, and SVG.

stxnext.com 34

http://sunpy.org
http://www.sympy.org
https://www.tensorflow.org/
http://deeplearning.net/software/theano
http://tomopy.readthedocs.org/en/latest
http://home.gna.org/veusz
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Final Thoughts

Just to make sure we’ve covered all the bases, let’s recap why you should choose Python
as your programming language:

● you will write your code faster, optimizing developer resources;
● you will have access to tons of dedicated Python libraries and frameworks, so you

won’t have to build everything from scratch;
● you will review your code more easily with a simple and clear language;
● you will enjoy support from guides and tutorials by Google and the Python

community;
● you will use the same language that Reddit, YouTube, EVE Online, and thousands of

global projects have trusted.

Python also offers an extensive selection of web frameworks, all of which have their own
strengths and weaknesses. At STX Next, we use whatever framework fits a given project
best, even learning new ones on the go if need be. What you should do is choose the one
you like the most and delve right into it.

In addition, if it’s the many applications of Python in data science or business you’re
interested in, our favorite programming language has got you covered on that front, too,
with its wide range of libraries. We couldn’t possibly tell you which libraries to use, though;
it depends entirely on your individual needs.

So if you’re looking for the one language to rule them all, the choice is clear.

But don’t take our word for it! Take a look at our Portfolio and learn the many examples of
applying the power of Python to a variety of projects across industries such as fintech,
marketing and advertising, or blockchain and crypto.

stxnext.com 35

https://stxnext.com/portfolio/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

And if you have any questions about Python, feel free to contact us and we’ll answer them
for you. We’re here to help.

stxnext.com 36

https://stxnext.com/contact-us/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers
https://stxnext.com/?utm_medium=asset&utm_source=ebook&utm_campaign=ebook-managers

Locations

Poznań (HQ)

Mostowa 38

61-854 Poznań, Poland

+48 61 610 01 92

Wrocław

Olsztyn

Katowice

Łódź

Hague (Netherlands)

Hire an exclusive

Python development team

Accelerate your software project with Europe’s largest Python software house.

For companies with big projects and fast deadlines.

Team Extension

Additional developers or experts supporting

 your development efforts within 14 days

End-to-End Development

Full development team taking your project all the way

from discovery to deployment

Consulting & Expertise

Solving your problems or improving your product

with the help of subject matter experts

projects delivered

750+ 3.5+ years
average partnership

17+ years
market experience

300+
clients served

550+
professionals on board

6.5+ years
average experience of our developers

JS & Mobile

Developers

Testers

Agile & Scrum

Product Design

Management

DevOps

Recruitment
Administration

Python

Developers

Ready to empower any project

with well-reviewed code

and a results-driven Agile process

Over 400

developers

Resources
Arm yourself with the expert knowledge you need to successfully deliver software projects.

Get free in-depth resources, templates, and checklists—all based on 17+ years

of software development experience.

Guides

Reports and case studies

Ebooks

discover more

The Global CTO
Survey 2021

Report

S u r v e y r e s u l t s & i n s i g h t s

How tails.com

Built a New Cat
Food Subscription
Business Line
from Kick-Off

to MVP in Under

3 Months

CASE STUDY

How LUMICKS
Validated and Built

a Platform to Help
Researchers
Analyze Diseases

at the Single-
Molecule Level

CASE STUDY

Evalueserve IPR&D
Names 2020

“Best Year Ever

for Product

Innovation”

by Outsourcing
Their IP Intelligence
Platform

CASE STUDY

Get actionable business results fast
by taking full advantage of the vast

possibilities outsourcing offers

to C-level executives.

A Practical Guide

to Outsourcing
Software
Development

Find out how Python compares

to other popular languages

and decide if it’s the best choice

for your software project.

Python vs. Other
Programming
Languages

Everything you need to know about
growing your software development

teams—both onsite and remote.

The Ultimate
Guide to Hiring
Software
Developers

The C-Level Guide
to Software
Development
Nearshoring

Minimize the risks and maximize
the benefits by outsourcing

your software development

efforts close to home.

From training through benefits

to paid leave, the cost of adding

new members to your team

is never just the salary.

The True Cost

of Hiring In-House
Developers

Discover why Python is such a great fit

for so many industries and what

areas of technology or business

it benefits the most.

What Is Python
Used for?

Become a great leader by leveraging
the huge experience of tech

leadership experts who have spent

years managing and growing teams.

Tech Leaders Hub:
Management

& Growth

Start your new role as CTO

the right way with practical advice

from senior tech executives.

Learn how to prepare and what to expect.

The New CTO’s
Handbook

https://www.stxnext.com/resources/
https://www.stxnext.com/resources/cto-survey-2021
https://www.stxnext.com/ebooks/tech-leaders-hub-management-growth/
https://www.stxnext.com/ebooks/new-ctos-handbook/
https://www.stxnext.com/ultimate-guide-hiring-software-developers-on-site-remote-edition/
https://www.stxnext.com/python-vs-other-programming-languages/
https://www.stxnext.com/software-development-outsourcing-guide/
https://www.stxnext.com/ebooks/c-level-guide-to-software-development-nearshoring/
https://www.stxnext.com/case-studies/lumicks
https://www.stxnext.com/case-studies/evalueserve
https://www.stxnext.com/case-studies/tails
https://www.stxnext.com/ebooks/true-cost-hiring-inhouse-developer/
https://www.stxnext.com/what-is-python-used-for/

Services
Your project is all that matters. We’ll build it like it was our own. Whether it’s team

extension, end-to-end product development, or expert consulting you’re after,

we’ll do everything in our power to meet your needs.

Python Development

Web Development Software Testing & QA Mobile Development

React Native Development

Fintech Development Machine Learning Data Engineering

Speed up work on your software projects

and outpace the competition.

Tell us about your project

Hire us

Marta Błażejewska

marta@stxnext.com
+48 506 154 343

Follow us in f ig tw yt git beh mi

82

DevOps Product Design Discovery Workshops

Django Development Node.js Development

JavaScript Development .NET Development

Director of Sales

Sebastian Resz

sebastian@stxnext.com
+48 690 433 578

Head of sales

https://www.stxnext.com/services/python-development/
https://www.stxnext.com/services/web-development/
https://www.stxnext.com/services/software-testing-and-quality-assurance/
https://www.stxnext.com/services/mobile-development/
https://www.stxnext.com/services/react-native-development/
https://www.stxnext.com/services/fintech-development/
https://www.stxnext.com/services/machine-learning/
https://www.stxnext.com/services/data-engineering/
https://www.stxnext.com/hire-us
https://www.linkedin.com/company/stx-next-python-experts/mycompany/
https://www.facebook.com/StxNext
https://www.instagram.com/stx_next/
https://twitter.com/STXNext
https://www.youtube.com/channel/UCI1AvU1piMZ80LXboJmRroQ
https://github.com/stxnext/
https://www.behance.net/STXNextTeam
https://medium.com/@STXNext
https://www.stxnext.com/services/devops/
https://www.stxnext.com/services/product-design/
https://www.stxnext.com/services/discovery-workshops/
https://www.stxnext.com/services/django-development/
https://www.stxnext.com/services/nodejs-development/
https://www.stxnext.com/services/javascript-development/
https://www.stxnext.com/services/net-development/

