
How to Port from Python 2

to Python 3

Python 2.7 to 3.X
Migration Guide

Table of Contents

Introduction 1

First steps toward Python 3 compatibility 2

Every new bit of code has to be compatible with Python 3 2

Quality assurance tools are your friends 3

1) Linters 3
2) Tests 3
3) Continuous integration 3
4) Error tracking 3

Safe compatibility fixes 4

Updating dependencies, part one: the easywins 4

Python 3-compatible forks 5

Dealing with backports 5

Python 3 compatibility linting 6

PyCharm code inspection 6

pylint --py3k 7

Python 2 to 3migration cheat sheet for pylint 7

Running Python 3 9

Updating dependencies, part two: finishing the job 9

Last steps in your Python 3migration 10

1) Continuous integration 10
2) Cache and shared application state 10
3) Manual regression tests 10

Gradual deployment or a leap of faith 11

Final thoughts 12

Introduction

Python 2will lose support on January 1, 2020. The time is nigh to upgrade to Python 3.

But is there a way to do it without disrupting your application development and
operation?

This guidewill show you how to upgrade to Python 3 quickly, easily, and cost-effectively.

We’ll assume you already have the latest Python 2.7 and are targeting Python 3.6 or
newer.

Anything lower than Python 3.5 would be ill-advised, since it is already the oldest version
still being supported and its end-of-life is scheduled for September 13, 2020.

stxnext.com 1

https://stxnext.com/

First Steps Toward Python 3 Compatibility

Every new bit of code has to be compatible with Python 3

Even if you just started thinking about migrating to Python 3, there is one policy you
should introduce into your code development right away: every new bit of code
committed to your repository needs to be Python 3, at least in theory. It’s a “best effort”
type of deal here.

If your product is under active development, following that principle alone will make the
actual migrationmuch smoother. It’s also super cheap.

There’s no need to modify your continuous integration pipeline, nice as it would be.
Delaying the introduction of the rule just because you don’t have the capacity to
implement changes to the pipeline at themomentmakes no sense.

You’re probably busy with introducing new features as it is. By making all your new code
Python 3-compatible, you’ll already be migrating without dedicating development time
solely to it.

It really is the perfect place to start.

Quality assurance tools are your friends

Good test coverage, linters, and other tools run under your continuous integration
systems are lifesavers whenever you introduce far-reaching changes to your application.

If you aren’t using any of these, we highly recommend you consider it.

Here are several quality assurance tools that can be immensely helpful when porting to
Python 3:

stxnext.com 2

https://dzone.com/articles/learn-how-to-setup-a-cicd-pipeline-from-scratch
https://stxnext.com/

1) Linters

Linters are the easiest to introduce, but that doesn’t mean they have little value. They will
provide a welcome boost to yourmigration efforts.

2) Tests

Tests are pretty essential and unfortunately require a certain time investment, especially
at the start, but they’re well worth it. For a sizable application, even themost basic happy
path tests will save you countless hours you would otherwise spend on laborious manual
testing and fighting regressions.

3) Continuous integration

Continuous integration brings all your software development efforts together in an
automated manner. Once again, this is a time-saving measure, especially important if
more than one personworks on your product.

4) Error tracking

Error tracking is yet another tool that can prove really helpful should something slip
through the cracks of pre-production testing.

As an example, Sentry provides you with a comprehensive error report in case of failure.
This includes stack trace, which allows you to fix common transition-related bugs in a
matter of minutes.

These quality assurance tools aren’t strictly required for migrating to Python 3. However,
it will be much harder to ensure your software keeps running smoothly without them.
IntroducingQA tools will also improve your standard development workflow.

All in all, the faster you implement the tools, the better for you.

Safe compatibility fixes

To kickstart your efforts, use automatic code conversion.

For this purpose, we suggest using python-modernize, which is built on top of the 2to3
tool and the popular six package.

Here’s what you should do, step by step:

1) Add a new “six” dependency to your application dependencies.

stxnext.com 3

https://www.h2kinfosys.com/blog/happy-path-testing/
https://www.h2kinfosys.com/blog/happy-path-testing/
https://stxnext.com/services/devops/
https://stxnext.com/services/devops/
https://sentry.io/welcome/
https://www.techopedia.com/definition/22307/stack-trace
https://python-modernize.readthedocs.io/en/latest/
http://python3porting.com/2to3.html
https://pythonhosted.org/six/
https://stxnext.com/

2) Run “pip install modernize.”
3) Run “python-modernize -w” in your project directory.
4) Review the changes. They should be reasonably safe, but sometimes visibly

inefficient—adjust them as you see fit.
5) Test your app on Python 2.

If all goes well, you should have relatively safe compatibility fixes already applied to your
code base. You can use them as a point of reference when adding new code until you fully
switch to Python 3.

Updating dependencies, part one: the easywins

Your application is already on the way to reach full Python 3 compatibility, but the issue of
its dependencies still remains.

It’s not uncommon for projects to accumulate dependencies that are no longer maintained
and consequently lack Python 3 support.

In some cases, all you’ll need to do is update a dependency to a newer version; in others,
you’ll have to make sure the update is the latest version, compatible with both Python 2
and 3. That’s because certain packagesmay have already dropped Python 2.

Regardless, at this point, it’s best to concentrate on the easywins.

Most of your packages are likely already compatible or only require an update to a newer
version. As a rule of thumb, we suggest updating to the latest release of each dependency
to be on the safe side.

Checking each dependency one by one can be time-consuming in larger projects. You can
facilitate the process by running “caniusepython3” on your “requirements.txt” (create one
with “pip freeze > requirements.txt” if you don’t have one).

This tool is far from accurate, but it’s good enough to achieve our main goal here:
assessing howmuchwork remains before you canmake the final switch to Python 3.

Python 3-compatible forks

It isn’t unusual to learn that a package has been completely abandoned by its original
authors. However, it’s still a good idea to browse through the package’s GitHub repository
issue tracker or PyPI index, since others have likely encountered the same issue as you and
already created a fork compatible with Python 3.

stxnext.com 4

https://python3statement.org/
https://stxnext.com/

If you’re unable to identify a working Python 3 package replacement, postpone upgrading
or replacing it to a later stage. You have bigger fish to fry.

Dealing with backports

Some of the features added to Python 3 have been backported as separate installable
packages. Popular examples of this include “subprocess32” and “functools32.”

These backports tend to be incompatible with Python 3 andwill fail if you even attempt to
install them. You can use environmentmarkers to make sure that doesn’t happen.

Here’s how you can carry out a conditional installation of “functools32,” only on Python 2:

functools32; python_version < "3"

This syntax can be applied to both “requirements.txt” and “setup.py.”

When it comes to the code, use a “try-except” syntax for such packages:

try:
from functools import lru_cache

except ImportError:
from functools32 import lru_cache

Python 3 compatibility linting

Once you’ve put all of our suggested fixes into practice, you and your team should already
be familiar with writing code that will run on Python 3 as well as it does on Python 2.

That being said, we strongly advise that you use code linters to support you in this task.

PyCharm code inspection

PyCharm started supporting compatibility static analysis 8 years ago. If you’re a PyCharm
user working with Python 2 codebases, make sure you have the feature enabled.

But if you’re not using PyCharm, this feature alone is a good enough reason to switch.

stxnext.com 5

https://www.webopedia.com/TERM/B/backport.html
https://blog.jetbrains.com/pycharm/2011/02/pycharm-1-2-eap-build-105-13-python-version-compatibility-inspection/
https://stxnext.com/

pylint --py3k

Pylint is known to be quite verbose and sometimes overzealous, but it still is an excellent
tool for locating small issues before they turn into big problems.

Install “pylint” and run “pylint --py3k application/*” to get a report of possible issues in the
code. Remember to examine at least each uniquemessage.

In the process, you might learn a thing or two about the changes and new features
introduced in Python 3, which is valuable in and of itself.

stxnext.com 6

https://stxnext.com/

Python 2 to 3migration cheat sheet for pylint

Here’s a quick cheat sheet of themost common pylint messages and fixes.

We left out frequent errors that can automatically be fixedwith “python-modernize.”

1) long-suffix (E1606); long-builtin (W1608)

Using the long suffix; long built-in referenced

123L
long(123)

123

or if you indeed need the long
type when using Python 2

try:
long

except NameError:
long = int

long(123)

2) exception-message-attribute (W1645)

Exception message removed in Python 3

exception.message exception.args[0]

3) using-cmp-argument (W1640)

Using the cmp argument for list.sort/sorted

sorted(iterable, cmp=cmp_func) sorted(iterable,
key=functools.cmp_to_key(cmp_fun
c))

4) cmp-builtin (W1604)

stxnext.com 7

https://stxnext.com/

Cmp built-in referenced

cmp # use key function if possible,
otherwise use
def cmp(x, y):

return (y > x) - (y < x)

5) old-division (W1619)

Division w/o __future__ statement

1 / 3 == 0 # True from __future__ import division

1 // 3 == 0 # True
1 / 3 == 0.3333333333333333 #
True

6) stop-iteration-return (R1708)

Do not raise StopIteration in the generator; use the return statement instead

def gen():
yield 1
raise StopIteration()
yield 2

def gen():
yield 1
return
yield 2

stxnext.com 8

https://stxnext.com/

Running Python 3

Updating dependencies, part two: finishing the job

After some time has passed, you’re welcome to once more look for Python 3-compatible
alternatives to your dependencies that youweren’t able to find before.

If you still come up empty, you’d be wise to consider whether youwant to be stuck with an
unsupported and unmaintained package. And if removing it from your codebase would
take up too much of your time—fork it and apply the exact same process. In the case of
most packages, a single run of “python-modernize” might very well fix the issue.

Once you’re done, either publish your fork on PyPI for others to benefit from or directly
install it from the repository and use it that way. Just make sure to credit the author and
remember to include the original license, since it’s required bymost open-source licenses.

Last steps in your Python 3migration

At this stage, you’re very close to being 100% Python 3 ready. However, there are still
several steps left to help you avoid potential problems during production deployment.

1) Continuous integration

If you are not doing already start running your app under Python 3 parallel to Python 2 in
your continuous integration environment. Even if the tests start failing, it will be helpful in
measuring your progress and preventing regressions.

If you don’t have full-fledged continuous integration, consider using tox for local testing
undermultiple versions of Python.

stxnext.com 9

https://pip.pypa.io/en/stable/reference/pip_install/#git
https://pip.pypa.io/en/stable/reference/pip_install/#git
https://tox.readthedocs.io/en/latest/
https://stxnext.com/

2) Cache and shared application state

Remember to flush your cache right before deployment.With such a significant change, an
application state that is anything other than blank will make debugging significantly more
cumbersome.

This is especially true for objects pickled using the “pickle” module under Python 2; they
won’t be compatible with Python 3, so be sure to remove or recreate them before
deployment. Otherwise, your app may fail outright, even if it was working just fine during
testing on a clean test environment.

3) Manual regression tests

No matter how comprehensive your tests are, you can always miss some things, like
differences in the configuration or the processed data. To make sure that’s not the case, a
final manual check for regressions is a must before you begin production deployment.

Beside happy paths, which are the most important, remember to test what is most often
missed, but may become a real problem during production setup. Your application needs
to work correctly with:

1) the WSGI production server (as opposed to the built-in server in development
mode);

2) emails and other external means of communication that may have beenmocked in
the dev/test setup;

3) production-like data as well as an empty database.

Gradual deployment or a leap of fate

Depending on a number of factors, such as the resources available or your service-level
agreement, you should consider gradual deployment.

If your service is load-balanced across multiple server instances, it may be a good idea to
launch Python 3 on only one of them, then start increasing the role of Python 3 as your
confidence in themigration grows.

This is the safest option, but it does require additional work, especially since some
artefacts, such as the aforementioned cache, have to be kept separate in Python 2 and
Python 3 instances.

Or... you could just go for it and deploy the whole thing at once!

stxnext.com 10

https://stxnext.com/

Either way, some minor bugs are bound to appear, so be prepared to respond to them
quickly. An error aggregation tool or sound loggingmanagement should allow you to solve
them at the first sign of trouble in no time at all.

stxnext.com 11

https://stxnext.com/

Final Thoughts

If you want to speed up your Python 3 migration, it helps to have someone with
experience in both Python 2 and 3 codebases.

Even though a substantial part of the process is automated, it’s still far from perfect.
What’s worse, steps such as updating or even swapping some of the dependencies can’t be
donewithout high working knowledge of them.

For that reason, when it comes to larger applications, we suggest hiring outside specialists
if you don’t currently have the right people for the job in-house.

stxnext.com 12

https://stxnext.com/services/
https://stxnext.com/

Locations

Poznań (HQ)

Mostowa 38

61-854 Poznań, Poland

+48 61 610 01 92

Wrocław

Olsztyn

Katowice

Łódź

Hague (Netherlands)

Hire an exclusive

Python development team

Accelerate your software project with Europe’s largest Python software house.

For companies with big projects and fast deadlines.

Team Extension

Additional developers or experts supporting

 your development efforts within 14 days

End-to-End Development

Full development team taking your project all the way

from discovery to deployment

Consulting & Expertise

Solving your problems or improving your product

with the help of subject matter experts

projects delivered

750+ 3.5+ years
average partnership

17+ years
market experience

300+
clients served

550+
professionals on board

6.5+ years
average experience of our developers

JS & Mobile

Developers

Testers

Agile & Scrum

Product Design

Management

DevOps

Recruitment
Administration

Python

Developers

Ready to empower any project

with well-reviewed code

and a results-driven Agile process

Over 400

developers

Resources
Arm yourself with the expert knowledge you need to successfully deliver software projects.

Get free in-depth resources, templates, and checklists—all based on 17+ years

of software development experience.

Guides

Reports and case studies

Ebooks

discover more

The Global CTO
Survey 2021

Report

S u r v e y r e s u l t s & i n s i g h t s

How tails.com

Built a New Cat
Food Subscription
Business Line
from Kick-Off

to MVP in Under

3 Months

CASE STUDY

How LUMICKS
Validated and Built

a Platform to Help
Researchers
Analyze Diseases

at the Single-
Molecule Level

CASE STUDY

Evalueserve IPR&D
Names 2020

“Best Year Ever

for Product

Innovation”

by Outsourcing
Their IP Intelligence
Platform

CASE STUDY

Get actionable business results fast
by taking full advantage of the vast

possibilities outsourcing offers

to C-level executives.

A Practical Guide

to Outsourcing
Software
Development

Find out how Python compares

to other popular languages

and decide if it’s the best choice

for your software project.

Python vs. Other
Programming
Languages

Everything you need to know about
growing your software development

teams—both onsite and remote.

The Ultimate
Guide to Hiring
Software
Developers

The C-Level Guide
to Software
Development
Nearshoring

Minimize the risks and maximize
the benefits by outsourcing

your software development

efforts close to home.

From training through benefits

to paid leave, the cost of adding

new members to your team

is never just the salary.

The True Cost

of Hiring In-House
Developers

Discover why Python is such a great fit

for so many industries and what

areas of technology or business

it benefits the most.

What Is Python
Used for?

Become a great leader by leveraging
the huge experience of tech

leadership experts who have spent

years managing and growing teams.

Tech Leaders Hub:
Management

& Growth

Start your new role as CTO

the right way with practical advice

from senior tech executives.

Learn how to prepare and what to expect.

The New CTO’s
Handbook

https://www.stxnext.com/resources/
https://www.stxnext.com/resources/cto-survey-2021
https://www.stxnext.com/ebooks/tech-leaders-hub-management-growth/
https://www.stxnext.com/ebooks/new-ctos-handbook/
https://www.stxnext.com/ultimate-guide-hiring-software-developers-on-site-remote-edition/
https://www.stxnext.com/python-vs-other-programming-languages/
https://www.stxnext.com/software-development-outsourcing-guide/
https://www.stxnext.com/ebooks/c-level-guide-to-software-development-nearshoring/
https://www.stxnext.com/case-studies/lumicks
https://www.stxnext.com/case-studies/evalueserve
https://www.stxnext.com/case-studies/tails
https://www.stxnext.com/ebooks/true-cost-hiring-inhouse-developer/
https://www.stxnext.com/what-is-python-used-for/

Services
Your project is all that matters. We’ll build it like it was our own. Whether it’s team

extension, end-to-end product development, or expert consulting you’re after,

we’ll do everything in our power to meet your needs.

Python Development

Web Development Software Testing & QA Mobile Development

React Native Development

Fintech Development Machine Learning Data Engineering

Speed up work on your software projects

and outpace the competition.

Tell us about your project

Hire us

Marta Błażejewska

marta@stxnext.com
+48 506 154 343

Follow us in f ig tw yt git beh mi

82

DevOps Product Design Discovery Workshops

Django Development Node.js Development

JavaScript Development .NET Development

Director of Sales

Sebastian Resz

sebastian@stxnext.com
+48 690 433 578

Head of sales

https://www.stxnext.com/services/python-development/
https://www.stxnext.com/services/web-development/
https://www.stxnext.com/services/software-testing-and-quality-assurance/
https://www.stxnext.com/services/mobile-development/
https://www.stxnext.com/services/react-native-development/
https://www.stxnext.com/services/fintech-development/
https://www.stxnext.com/services/machine-learning/
https://www.stxnext.com/services/data-engineering/
https://www.stxnext.com/hire-us
https://www.linkedin.com/company/stx-next-python-experts/mycompany/
https://www.facebook.com/StxNext
https://www.instagram.com/stx_next/
https://twitter.com/STXNext
https://www.youtube.com/channel/UCI1AvU1piMZ80LXboJmRroQ
https://github.com/stxnext/
https://www.behance.net/STXNextTeam
https://medium.com/@STXNext
https://www.stxnext.com/services/devops/
https://www.stxnext.com/services/product-design/
https://www.stxnext.com/services/discovery-workshops/
https://www.stxnext.com/services/django-development/
https://www.stxnext.com/services/nodejs-development/
https://www.stxnext.com/services/javascript-development/
https://www.stxnext.com/services/net-development/

